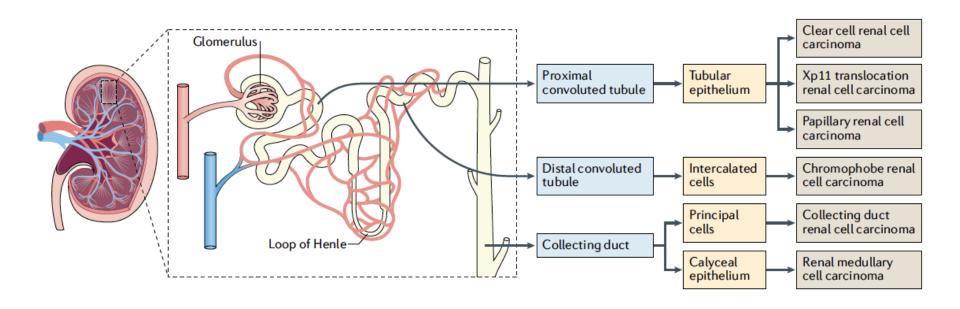
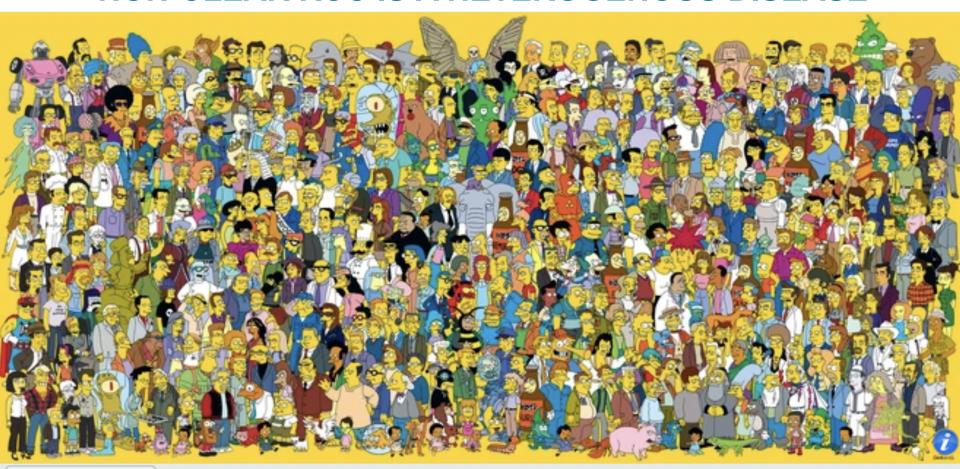
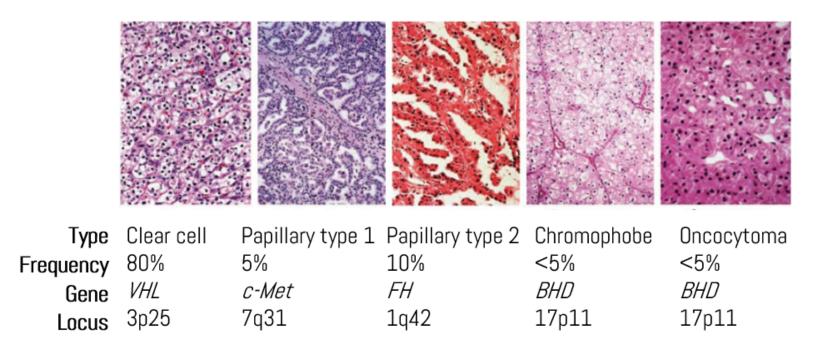
ADVANCED NON-CLEAR CELL RCC MANAGEMENT IN 2025: IS ANYTHING CLEAR FOR THE CLINICIAN?

Cristina Suárez, MD PhD

Hospital Universitari Vall d'Hebron – Vall d'Hebron Institute of Oncology,

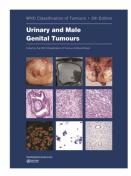



Disclosures


- □Employment: None
- □Consultant or Advisory Role: BMS, Pfizer, IPSEN, MSD, Pharma, EISAI, Recordati, Tellix
- □Stock Ownership: None
- □Research Funding: IPSEN. BMS, Pfizer
- □Speaking: Ipsen, EISAI, MSD, Tellix
- □Travel/acommodation expenses: Ipsen, MSD, Bayer

Location and cell of origin of RCC histological subtypes

Dizman N, et al. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol 2020;16(8):435–51. Copyright © 2020, Springer Nature Limited.



	lear Cell RCC	Chromophobe RCC	Type I Papillary RCC	Type 2 Papillary RCC/FH- RCC/HLRCC	Unclassified RCC	Renal Medullary Carcinoma	MiT family Translocation RCC	SDH-Deficient RCC
Incidence:	75%	5%	5%-10%	5%-10%	< 5%	< 1%	~ 1%	< 1%
Median Age:	62	58	62	Type 2 pRCC: 62 HLRCC: 39-45	50-55	27	31-49	38
Prognosis:	Variable	Very good	Good	Poor	Variable (often poor)	Dismal	Often poor	Variable (often good)
Molecular Alterations:	3p loss, VHL	PTEN, TP53, mTOR, TSC1/2	MET	FH, NF2, 9p loss	NF2, SETD2 BAP1, KMT2C, 9p loss	SMARCB1 loss, 8q gain	TFE3/TFEB translocation	SDHA, SDHB, SDHC, or SDHD
Therapeutic Targets:	HIF, VEGF, mTOR	c-KIT, mTOR	MET	Metabolism	Hippo-YAP, EGFR & mTOR if NF2 loss	c-MYC, replication and proteotoxic stress, Notch2	TFE3/PI3K/AKT/ mTOR	Metabolism

C	lear Cell RCC	Chromophobe RCC	Type I Papillary RCC	Type 2 Papillary RCC/FH- RCC/HLRCC	Unclassified RCC	Renal Medullary Carcinoma	MiT family Translocation RCC	SDH-Deficient RCC
Incidence:	75%	5%	5%-10%	5%-10%	< 5%	< 1%	~ 1%	< 1%
Median Age:	62	58	62	Type 2 pRCC: 62 HLRCC: 39-45	50-55	27	31-49	38
Prognosis:	Variable	Very good	Good	Poor	Variable (often poor)	Dismal	Often poor	Variable (often good)
Molecular Alterations:	3p loss, VHL	PTEN, TP53, mTOR, TSC1/2	MET	FH, NF2, 9p loss	NF2, SETD2 BAP1, KMT2C, 9p loss	SMARCB1 loss, 8q gain	TFE3/TFEB translocation	SDHA, SDHB, SDHC, or SDHD
Therapeutic Targets:	HIF, VEGF, mTOR	c-KIT, mTOR	MET	Metabolism	Hippo-YAP, EGFR & mTOR if NF2 loss	c-MYC, replication and proteotoxic stress, Notch2	TFE3/PI3K/AKT/ mTOR	Metabolism

Cl	ear Cell RCC	Chromophobe RCC	Type I Papillary RCC	Type 2 Papillary RCC/FH- RCC/HLRCC	Unclassified RCC	Renal Medullary Carcinoma	MiT family Translocation RCC	SDH-Deficient RCC
Incidence:	75%	5%	5%-10%	5%-10%	< 5%	< 1%	~ 1%	< 1%
Median Age:	62	58	62	Type 2 pRCC: 62 HLRCC: 39-45	50-55	27	31-49	38
Prognosis:	Variable	Very good	Good	Poor	Variable (often poor)	Dismal	Often poor	Variable (often good)
Molecular Alterations:	3p loss, VHL	PTEN, TP53, mTOR, TSC1/2	MET	FH, NF2, 9p loss	NF2, SETD2 BAP1, KMT2C, 9p loss	SMARCB1 loss, 8q gain	TFE3/TFEB translocation	SDHA, SDHB, SDHC, or SDHD
Therapeutic Targets:	HIF, VEGF, mTOR	c-KIT, mTOR	MET	Metabolism	Hippo-YAP, EGFR & mTOR if NF2 loss	c-MYC, replication and proteotoxic stress, Notch2	TFE3/PI3K/AKT/ mTOR	Metabolism

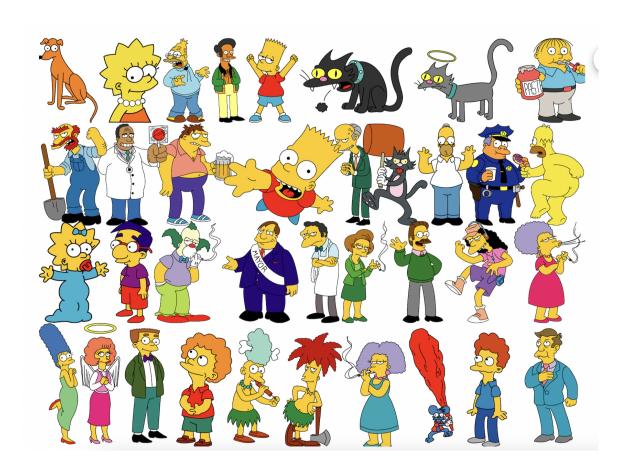
C	lear Cell RCC	Chromophobe RCC	Type I Papillary RCC	Type 2 Papillary RCC/FH- RCC/HLRCC	Unclassified RCC	Renal Medullary Carcinoma	MiT family Translocation RCC	SDH-Deficient RCC
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Incidence:	75%	5%	5%-10%	5%-10%	< 5%	< 1%	~ 1%	< 1%
Median Age:	62	58	62	Type 2 pRCC: 62 HLRCC: 39-45	50-55	27	31-49	38
Prognosis:	Variable	Very good	Good	Poor	Variable (often poor)	Dismal	Often poor	Variable (often good)
Molecular Alterations:	3p loss, VHL	PTEN, TP53, mTOR, TSC1/2	MET	FH, NF2, 9p loss	NF2, SETD2 BAP1, KMT2C, 9p loss	SMARCB1 loss, 8q gain	TFE3/TFEB translocation	SDHA, SDHB, SDHC, or SDHD
Therapeutic Targets:	HIF, VEGF, mTOR	c-KIT, mTOR	MET	Metabolism	Hippo-YAP, EGFR & mTOR if NF2 loss	c-MYC, replication and proteotoxic stress, Notch2	TFE3/PI3K/AKT/ mTOR	Metabolism

WHO 2004

Clear cell renal cell carcinoma
Multi-locular clear cell renal cell carcinoma
Papillary renal cell carcinoma
Chromophobe renal cell carcinoma
Carcinoma of the collecting ducts of Bellini
Renal medullary carcinoma
Xp11 translocation carcinoma
Carcinoma associated with neuroblastoma
Mucinous, tubular, and spindle cell carcinoma
Renal cell carcinoma, unclassified
Papillary adenoma
Oncocytoma

WHO 2016

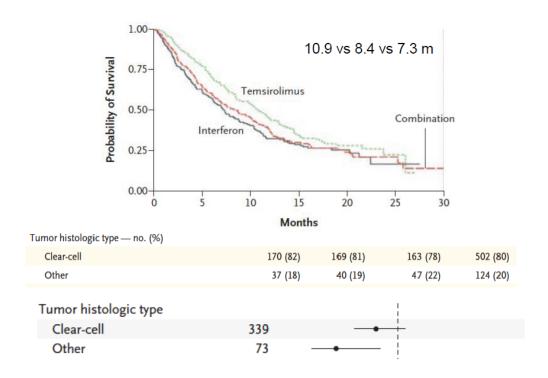
Clear cell renal cell carcinoma

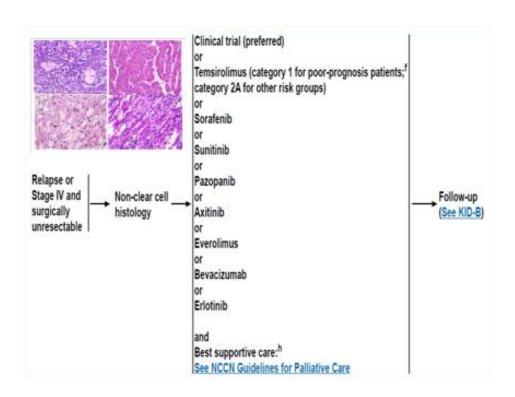

Multilocular cystic renal neoplasm of LMP
Papillary renal cell carcinoma
Hereditary leiomyomatosis and RCC associated
Chromophobe renal cell carcinoma
Collecting duct carcinoma of the kidney
Renal medullary carcinoma
MiT Family translocation carcinomas
Mucinous tubular and spindle cell carcinoma
Tubulocystic renal cell carcinoma
Acquired cystic disease associated renal cell carcinoma
Clear cell papillary renal cell carcinoma
Succinate dehydrogenase (SDH) deficient renal
carcinoma
Renal cell carcinoma, unclassified

WHO 2022

Clear cell

Multilocular cystic renal neoplasm of low m.p **ELOC Mutation** Papillary RCC Fumarate H deficient Mucinous tubular spindle RCC **Tubulocystic** Clear cell papillary RC tumour Chromophobe Oncocytoma SDH deficient Other oncocytic tumours TFE3- rearranged TFEB- altered Collecting duct carcinoma SMARCB1 deficient renal medullary carcinoma ALK rearranged renal cell carcinomas Eosinophilic solid and cystic RCC Acquired cystic disease associated RCC RCC NOS


© International Agency for Research on Cancer. WHO Classification of Tumours Editorial Board, 2022, Urinary and Male Genital Tumours. Available at: https://publications.iarc.fr/610; accessed Sep 2024.


TKI and mTOR INHIBITORS MET INHIBITORS IMMUNOTHERAPY COMBINATIONS

TKI and mTOR INHIBITORS MET INHIBITORS IMMUNOTHERAPY COMBINATIONS

A little bit of history... mtor inhibitors: TEMSIROLIMUS (intorsect)

NCCN GUIDELINES 2015...

SUNITINIB vs EVEROLIMUS

	Median PFS (months)	Median OS (months)	Overall Response Rate (ORR)
Sunitinib (SUPAP) N=61	6.6 (Type 1) vs 5.5 (Type 2)	17.8 (Type 1) vs 12.4 (Type 2)	13% (Type 1) vs 11% (Type 2)
Sunitinib N=31	6.4	25.6	36%
Everolimus (RAPTOR) N=92	4.1	21.4	0%
Everolimus N=49	5.2	14	10%
Sunitinib vs everolimus (ESPN) N=68	6.1 vs 4.1	NR vs 10.5	9% vs 3%
Sunitinib vs everolimus (ASPEN) N=108	8.3 vs 5.6	32 vs 13	18% vs 9%

Ravaud A, et al Ann Oncol 2015;26(6):1123-1128; Lee J-L, et al. Ann Oncol 2012;23(8):2108-211; Escudier B, et al. Eur J Cancer 2016:69:226-235; Koh Y, et al. Ann Oncol 2013;24(4):1026-31; Tannir NM, et al. Eur Urol 2016;69(5):866-74; Armstrong AJ, et al. Lancet Oncol 201617(3):378-388.

TKI: AXITINIB IN PAPILLARY RCC (AXIPAP)

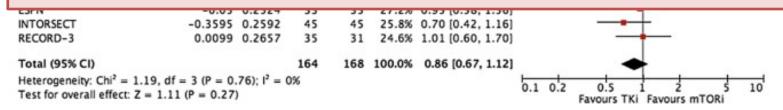
Axitinib in first-line for patients with metastatic papillary renal cell carcinoma: Results of the multicentre, open-label, single-arm, Phase 2 AXIPAP trial

Endpoints	Global PRCC population (N=42)a,b	Type 1 subgroup (N=13)	Type 2 subgroup (N=28)
Best response			
PR	12 (28.6%)	1 (7.7%)	10 (35.7%)
SD	26 (61.9%)	10 (76.9%)	16 (57.1%)
PD	4 (9.5%)	2 (15.4%)	2 (7.1%)
Median PFS (months)	6.6 (95% CI: 5.5, 9.2)	6.7 (95% CI: 2.9, 14.0)	6.2 (95% CI: 5.4, 9.2)
24 wk-PFR	45.2 (95% CI: 32.6 to +∞)	46.2 (95% CI: 23.4 to +∞)	42.9 (95% CI: 27.5 to +∞)
Median OS (months)	18.9 (95% CI: 12.8, NR)	NR	17.4 (95% CI: 11.4, NR)

TKI vs mTOR INHIBITORS

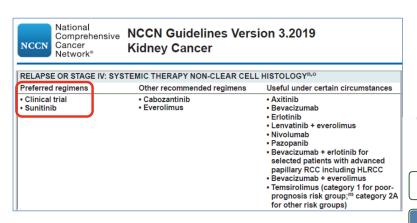
Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies

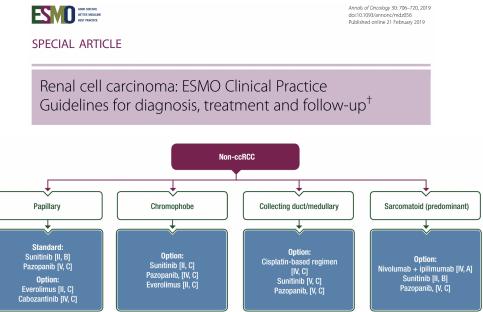
Study or Subgroup	log[Hazard Ratio]	SE	TKi Total	mTORi Total	Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
ASPEN	-0.1881	0.2785	51	57	22.4%	0.83 [0.48, 1.43]	
ESPN	-0.05	0.2524	33	35	27.2%	0.95 [0.58, 1.56]	
INTORSECT	-0.3595	0.2592	45	45	25.8%	0.70 [0.42, 1.16]	
RECORD-3	0.0099	0.2657	35	31		1.01 [0.60, 1.70]	
Total (95% CI)			164	168	100.0%	0.86 [0.67, 1.12]	•
Heterogeneity: Chi2 =	1.19, df = 3 (P = 0	.76); I ² =	0%				
Test for overall effect							0.1 0.2 0.5 1 2 5 10 Favours TKi Favours mTORi
			TKi	mTORi		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
ASPEN	-0.1881	0.2785	51	57	22.4%	0.83 [0.48, 1.43]	
ESPN	-0.05	0.2524	33	35	27.2%	0.95 [0.58, 1.56]	
INTORSECT	-0.3595	0.2592	45	45	25.8%	0.70 [0.42, 1.16]	
RECORD-3	0.0099	0.2657	35	31		1.01 [0.60, 1.70]	
Total (95% CI)			164	168	100.0%	0.86 [0.67, 1.12]	•


Eur J Cancer, 83, Ciccarese C, et al. Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies, 237–46..

TKI vs mTOR INHIBITORS

Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies


			TKi	mTORi		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
ASPEN	-0.1881	0.2785	51	57	22.4%	0.83 [0.48, 1.43]	
ESPN	-0.05	0.2524	33	35	27.2%	0.95 [0.58, 1.56]	
INTORSECT	-0.3595	0.2592	45	45	25.8%	0.70 [0.42, 1.16]	


Conclusions: Treatment with TKis significantly improves PFS, but not OS, when compared with mTORi. Moreover, sunitinib as first-line therapy reduces the risk of progression compared with everolimus; therefore, supporting the standard treatment paradigm broadly used for ccRCC patients. The relatively modest efficacy of available targeted therapies reinforces the need of future histology-based, molecular-driven therapeutic paradigm

Eur J Cancer, 83, Ciccarese C, et al. Addressing the best treatment for non-clear cell renal cell carcinoma: A meta-analysis of randomised clinical trials comparing VEGFR-TKis versus mTORi-targeted therapies, 237–46..

GUIDELINES IN 2019...

TKI and mTOR INHIBITORS MET INHIBITORS IMMUNOTHERAPY COMBINATIONS

Comprehensive Molecular Characterisation of Papillary Renal-Cell Carcinoma

The Cancer Genome Atlas Research Network. N Engl J Med 2016;374(2):135-45

Characterisation of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling

Pal SK, et al. European Urology 2018;73:71-78

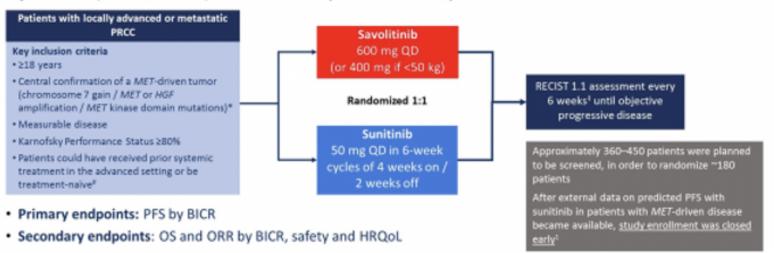
MET is a potential target across all papillary renal cell carcinomas: Result from a large molecular study of PRCC with CGH array and matching gene expression array

Albiges L, et al. Clin Cancer Res 2014;20(13):3411-21

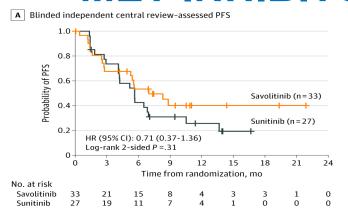
MET INHIBITORS: PHASE 2 TRIALS

	Histology	MET Status	PFS (m)	ORR
Foretinib (N=74) 1st and 2nd line	All papillary	MET +: 10 MET -: 57 NA: 7	9.3	MET +: 50% MET -: 9%
Savolitinib (N=109) 1st–3rd line	All papillary	MET +: 44 MET -: 46 NA: 19	MET +: 6.2 MET -: 1.4	MET +: 18% MET -: 0%
Crizotinib (N=109) 1st–3rd line	Type 1 Papillary	MET +: 4 MET -: 16 NA: 3	5.8 MET +: 30.5 MET -: 3	MET +: 50% MET -: 25%

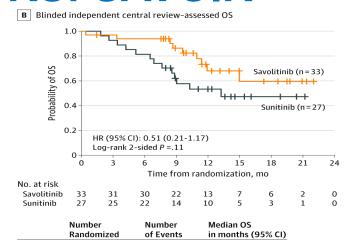
WHAT DOES MET ALTERATION MEAN?


MET alterations in papillary RCC

- Germline mutations in *MET* are the hallmark of hereditary papillary renal cancer but are relatively uncommon
- Definitions vary on what constitutes "MET altered"
 - □ Activating MET mutations of the protein kinase domain or germline MET
 - ☐ Gain of chromosome 7
 - ☐ *MET* amplification
 - ☐ HGF amplification


MET INHIBITORS: SAVOIR

SAVOIR study design


Open-label, randomized, Phase III trial (NCT03091192)

MET INHIBITORS: SAVOIR

	Number Randomized	Number of Events	Median PFS in months (95% CI)
Savolitinib	33	17	7.0 (2.8-NC)
Sunitinib	27	20	5.6 (4.1-6.9)

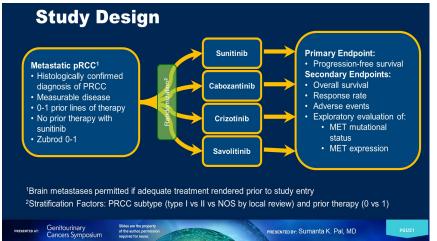
NC (11.9-NC)

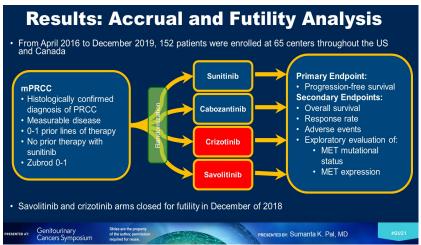
13.2 (7.6-NC)

9

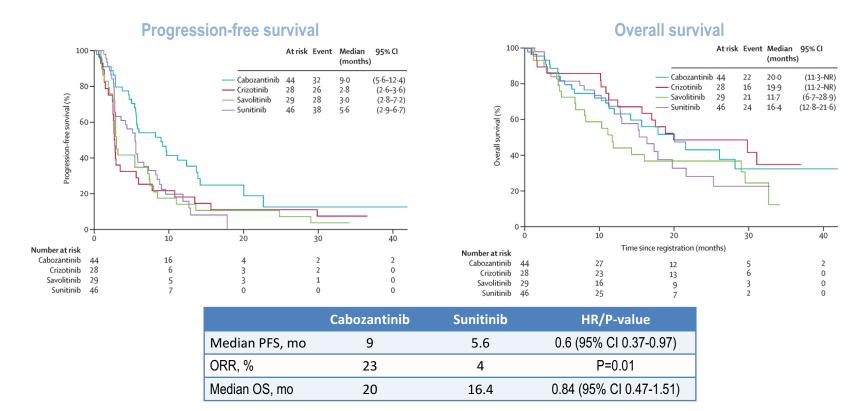
13

Outcome	Savolitinib (n=33)	Sunitinib (n=27)
ORR* by BICR, % (95 % CI)	27 (13.3-45.5)	7 (0.9-24.3)
DCR by BICR,% (95% CI) 6 months 12 months	48 (30.8-66.5) 30 (15.6-48.7)	37 (19.4-57.6) 22 (8.6-42.3)
Any tumour shrinkage, %	67	71

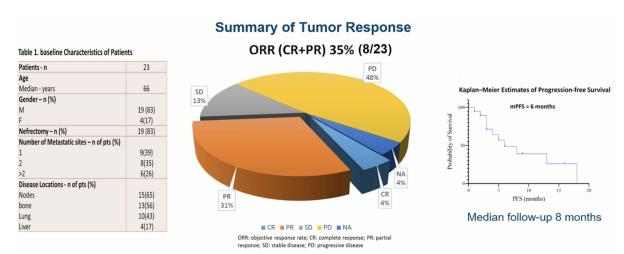

Savolitinib


Sunitinib

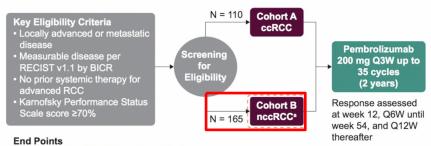
33


27

MET INHIBITORS: PAPMET


MET INHIBITORS: PAPMET

Pal S. Presented at the 2021 Genitourinary Cancers Symposium. By permission of Prof S.K. Pal; Pal S, et al. Lancet 2021;397(10275):695–703.


MET INHIBITORS: CABOZANTINIB in Collecting Duct Carcinoma (BONSAI)

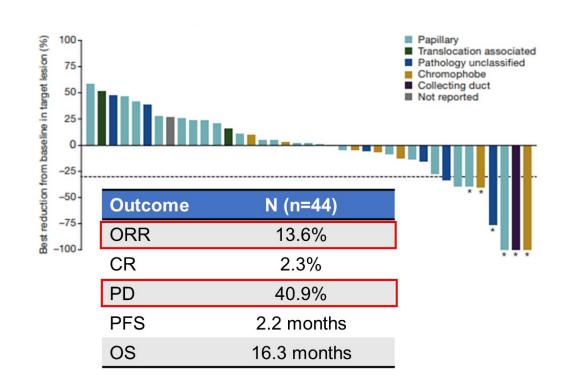
TKI and mTOR INHIBITORS MET INHIBITORS IMMUNOTHERAPY COMBINATIONS

IMMUNOTHERAPY: PEMBROLIZUMAB (KEYNOTE 427)

nd		

• Primary: ORR (RECIST v1.1 by BICR)

• Secondary: OS, PFS, DOR, DCR (RECIST v1.1 by BICR), and safety

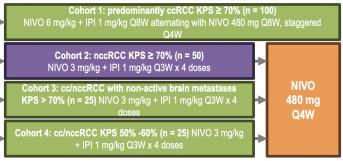

		IMDC Category		Histology		
	Overall N = 165	Favorable n = 53	Intermediate/ Poor n = 112	Papillary RCC n = 118	Chromophobe RCC n = 21	Unclassified RCC n = 26
ORR, ^a % (95% CI)	26.7 (20.1-34.1)	32.1 (19.9-46.3)	24.1 (16.5-33.1)	28.8 (20.8-37.9)	9.5 (1.2-30.4)	30.8 (14.3-51.8)
DCR, ^b % (95% CI)	43.0 (35.4-51.0)	43.4 (29.8-57.7)	42.9 (33.5-52.6)	47.5 (38.2-56.9)	33.3 (14.6-57.0)	30.8 (14.3-51.8)
Best response, n	1 (%)					
CR	11 (6.7)	7 (13.2)	4 (3.6)	7 (5.9)	1 (4.8)	3 (11.5)
PR	33 (20.0)	10 (18.9)	23 (20.5)	27 (22.9)	1 (4.8)	5 (19.2)
SD	51 (30.9)	17 (32.1)	34 (30.4)	39 (33.1)	10 (47.6)	2 (7.7)
PD	60 (36.4)	18 (34.0)	42 (37.5)	38 (32.2)	9 (42.9)	13 (50.0)
NEc	2 (1.2)	1 (1.9)	1 (0.9)	1 (0.8)	0 (0)	1 (3.8)
No assessment ^d	8 (4.8)	0 (0)	8 (7.1)	6 (5.1)	0 (0)	2 (7.7)

Characteristics	N (n=165)	ORR
Papillary	71.5%	28.8%
Chromophobe	12.7%	9.5%
Unclassified	15.8%	30.8%
Sarcomatoid	23.0%	42.1%
Prior treatment	0%	26.7%
PD-L1+	61.8%	35.3% (12.1%)

Median PFS 4.2 m Median OS 30 m

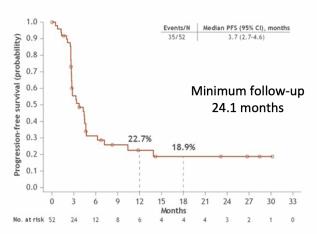
IMMUNOTHERAPY: Nivolumab (CHeCKMATE-374)

Characteristics	N (n=44)	ORR
Papillary	54.5%	8.3%
Chromophobe	15.9%	28.6%
Unclassified	18.2%	12.5%
Translocation	5%	0%
Collecting duct	2%	100%
Medullary	2%	0%
Not reported	2%	-
Sarcomatoid	9.1%	50%
Prior treatment	34.1%	-

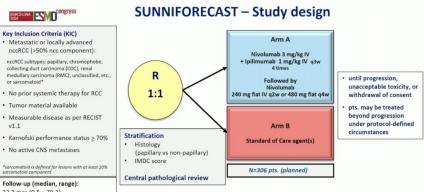

IMMUNOTHERAPY: nivolumab-IPILIMUMAB (CHECKMATE-920)

N=200

Kev inclusion criteria


- Advanced or metastatic RCC (ccRCC and nccRCC)
- No prior systemic therapy for advanced/ metastatic RCC
- Any IMDC risk
- Brain metastases allowed if asymptomatic and not on CS or receiving radiation (enrolled to cohort 3 or 4)
- KPS 70% (cohorts 1-3) or 50-60% (cohort

Characteristics	N (n=44)	ORR
Unclassified	42.3%	-
Papillary	34.6%	-
Chromophobe	13.5%	-
Translocation	3.8%	-
Collecting duct	3.8%	-
Medullary	1.9%	-
Sarcomatoid	28.8%	35.7%
Prior treatment	0%	19.6%
PD-L1+	38.5%	30.8%


Treat for ≤ 2 years or until RECIST v1.1-defined progression, unacceptable toxicity, or withdrawal of consent

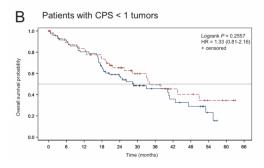
Outcome	
ORR/CR	19.6%/4.3%
PD	41.3%
PFS	3.7 months
OS	21.2 months

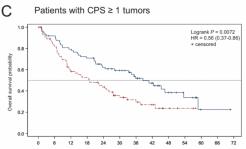
Tykodi SS, et al. J Immunother Cancer 2022

IMMUNOTHERAPY: NIVOLUMAB-IPILIMUMAB SUNNIFORECAST



	Ipilimumab/ nivolumab N = 157	Standard of Care N = 152	P value
OS rate at 12 months (95%CI)	78% (71%-84%)	68% (60%-75%)	0.026
OS rate at 6 months (95%CI)	91% (85%-95%)	85% (79%-90%)	0.064
OS rate at 18 months (95%CI)	67% (59%-73%)	60% (52%-68%)	0.124
Median OS, months (95%CI)	33.2 (23.4-40.8)	25.2 (18.8-33.0)	0.163


22.3 mos (0.5 – 70.2)	
Principal Investigator and Coordinator: Prof. Dr. L. Bergmann, Med. Klin. II, Goethe University, Frankfurt, Germany	Primary Endpoint: OS rate at 12 months Key Secondary Endpoints: OS, OS-rate at 6 and 18 months; PFS, ORR, TTP, Safety, QoL Exploratory Endpoints: predictive biomarkers (e.g.PD-L1 expression)


	All		Papillary nccRCC		Non-papillary nccRCC	
	Ipilimumab/ nivolumab (N = 125)	SOC (N = 123)	Ipilimumab/ nivolumab (N = 72)	SOC (N = 77)	Ipilimumab/ nivolumab (N = 53)	SOC (N = 46)
Objective response rate, n (%)	41 (33)	24 (20)	21 (29)	16 (21)	20 (38)	8 (17)
Best overall response, n (%)						
Complete response	10 (8)	2 (2)	7 (10)	2 (3)	3 (6)	0
Partial response	31 (25)	22 (18)	14 (20)	14 (18)	17 (32)	8 (17)
Stable disease	41 (33)	76 (62)	27 (38)	47 (61)	14 (26)	29 (63)
Progressive disease	43 (34)	23 (19)	24 (33)	14 (18)	19 (36)	9 (20)

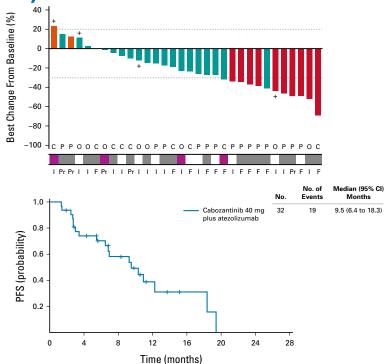
IMMUNOTHERAPY: NIVOLUMAB-IPILIMUMAB SUNNIFORECAST

	Ipilimumab/ nivolumab N = 157	Standard of Care N = 152	P value
OS rate at 12 months (95%CI)	78% (71%-84%)	68% (60%-75%)	0.026
OS rate at 6 months (95%CI)	91% (85%-95%)	85% (79%-90%)	0.064
OS rate at 18 months (95%CI)	67% (59%-73%)	60% (52%-68%)	0.124
Median OS, months (95%CI)	33.2 (23.4-40.8)	25.2 (18.8-33.0)	0.163

Bergmann L, et al. ESMO 2024;; Bergmann L, Ann Onc 2025

TKI and mTOR INHIBITORS MET INHIBITORS IMMUNOTHERAPY COMBINATIONS

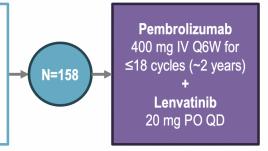
COMBOS: NIVOLUMAB+CABOZANTINIB IN NON-CLEAR RCC



Cohort 2: chromophobe RCC (N=7)

Parameter	Line of treatment		Renal cell carcinoma histology		
	1st line (n=26)	2nd line (n=14)	Papillary (n=32)	UCP (n=6)	TA-RCC (n=2)
ORR,% (95% CI)	54 (33-73)	36 (13-65)	47 (30-64)	50 (12-88)	50 (1-99)
Complete response, n (%)	1 (3.8)	0 (0)	1 (3.1)	0 (0)	0 (0)
Partial response, n (%)	13 (50)	5 (36)	14 (44)	3 (50)	1 (50)
Stable disease, n (%)	12 (46)	7 (50)	16 (50)	2 (33)	1 (50)
Progressive disease, n (%)	0 (0)	2 (14)	1 (3.1)	1 (17)	0 (0)
Median PFS, mo (95% CI)	11 (7-19)	13 (5-16)	13 (7-16)	8 (1-NE)	14 (5-23)

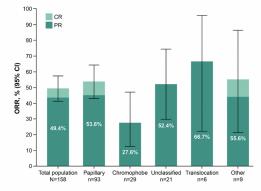
COMBOS: ATEZOLIZUMAB+CABOZANTINIB IN NON-CLEAR RCC (COSMIC 021)


Response	ncRCC Cabozantinib 40 mg plus atezolizumab (n=32)
Objective response rate, % (80% CI)	31 (20 to 44)
Best overall response, n (%) Complete response Partial response Stable disease Progressive disease Not evaluable or missing	0 10 (31) 20 (63) 2 (6) 0
Disease control, n (%)	30 (94)
Time to response, median (range), months	2.7 (1-7)
Duration of response, median (95% CI), months	8.3 (2.4 to NE)
Patients with ongoing response at cutoff, n (%)	4 (13)

COMBOS: LENVATINIB-PEMBROLIZUMAB IN NON-CLEAR RCC (KEYNOTE B61)

Key eligibility criteria

- Histologically confirmed diagnosis of nccRCC (per investigator)
- Locally advanced/metastatic disease
- No prior systemic therapy
- Measurable disease per RECIST v1.1
- . Tumour tissue sample available
- KPS ≥70%

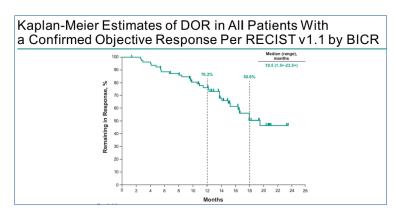


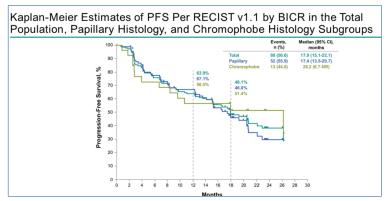
Tumour assessments12 weeks from allocation then Q6W for 54 weeks then Q12W thereafter

Endpoints

- Primary: ORR per RECIST v1.1 by BICR
- Secondary: CBR, DCR, DOR, and PFS per RECIST v1.1 by BICR; OS, safety and tolerability

	Pembrolizumab + Lenvatinib N=158
ORR (CR + PR), % (95% CI)	49.4 (41.3-57.4)
DCR (CR+PR+SD), % (95% CI)	82.3 (75.4-87.9)
CBR (CR, PR, or SD for ≥6 months), % (95% CI)	71.5 (63.8-78.4)
Best response, n (%)	
CR	9 (5.7)
PR	69 (43.7)
SD	52 (32.9)
PD	17 (10.8)
NE	1 (0.6)
NA ^b	10 (6.3)


COMBOS: LENVATINIB-PEMBROLIZUMAB IN NON-CLEAR RCC (KEYNOTE B61)


Key eligibility criteria Histologically confirmed diagnosis of nccRCC (per investigator) Locally advanced/metastatic disease No prior systemic therapy Measurable disease per RECIST v1.1 Tumour tissue sample available KPS ≥70% Pembrolizumab 400 mg IV Q6W for ≤18 cycles (~2 years) + Lenvatinib 20 mg PO QD

Tumour assessments 12 weeks from allocation then Q6W for 54 weeks then Q12W thereafter

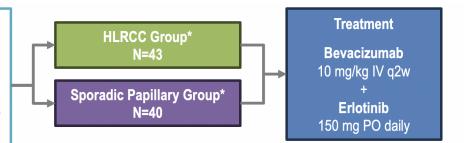
Endpoints

- Primary: ORR per RECIST v1.1 by BICR
- Secondary: CBR, DCR, DOR, and PFS per RECIST v1.1 by BICR; OS, safety and tolerability

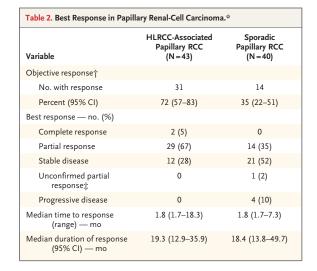
Albiges L, et al. Lancet Oncol 2023;24(8):881-891; Voss M. Presented at ASCO GU Meeting 2024.

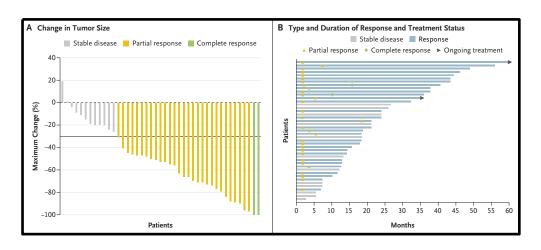
COMBOS: ATEZOLIZUMAB+ERLOTINIB IN PAPILLARY RCC

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

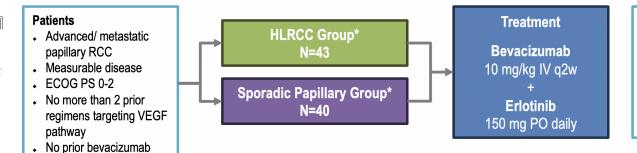
Bevacizumab and Erlotinib in Hereditary and Sporadic Papillary Kidney Cancer


Eric A. Singer, M.D. (Abhara Stan, M.D., Ph.D.). Sandeep Gurram, M.D.). Eric A. Singer, M.D. (Abhara Stiana, M.D., M.P.H.), Munglid Harthy, M.D.; draft W. Ball, M.D.; Julia C. Friend, M.P.H., PA.C.; Lisa Mac, M.P.H., PA.C.; In Purcell, B.S.M., R.N.; Cathly D. Vocke, P.D.C. (Christopher). Ricketts, Ph.D.; Holdel H. Kong, M.D., M.H.S.; Edward W. Cowen, M.D., M.H.S.; Athan A. Malleyen, M.D.; Jeannel, H. Shir, Ph.D.; Pallary, Merrino, M.D.; Athan A. Malleyen, M.D.; Jeannel, H. Shir, Ph.D.; Pallary, Merrino, M.D.; Athan A. Malleyen, M.D.; Jeannel, M.D.; Ph. Ph.D.; Ph.

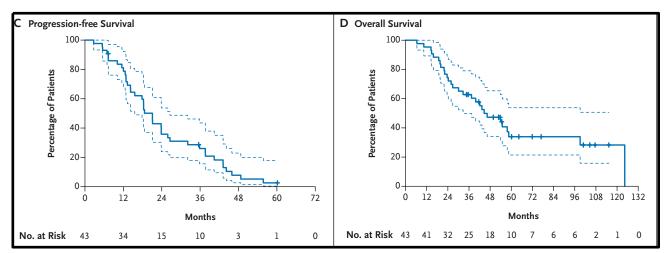

Patients

- Advanced/ metastatic papillary RCC
- Measurable disease
- ECOG PS 0-2
- No more than 2 prior regimens targeting VEGF pathway
- · No prior bevacizumab

Primary endpoint
Overall Response Rate per
RECIST 1.1
Secondary endpoints
PFS and duration of
response


COMBOS: ATEZOLIZUMAB+ERLOTINIB IN PAPILLARY RCC

Bevacizumab and Erlotinib in Hereditary


Bevacizumab and Erlotinib in Hereditary and Sporadic Papillary Kidney Cancer

The NEW ENGLAND JOURNAL of MEDICINI

Eric A. Singer, M.D., 'Abhinav Sidana, M.D., M.P.H., 'Munjid Al Harthy, M.D.,' Hardk W. Ball, M.D.,' Julia C. Friend, M.P.H., P.A.C.,' Lisa Max, M.P.H., P.A.C.,' Friin Purcell, B.S.N., R.N.,' Cathy D. Vocke, Ph.D.,' Christopher J. Ricketts, Ph.D. Heidl H. Kong, M.D., M.H. Se,' Elward W. Cowen, M.D., M.H. Se,' Ashkan A. Malayeri, M.D., 'Joanna H. Shih, Ph.D.,' Maria J. Merino, M.D.,' and W. Marston Linehan, M.D.?

Primary endpoint
Overall Response Rate per
RECIST 1.1
Secondary endpoints
PFS and duration of
response

COMBOS: LENVATINIB-EVEROLIMUS IN NON-CLEAR RCC

Key inclusion criteria

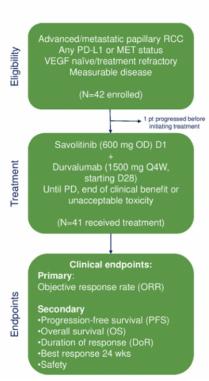
- Histologically confirmed nccRCC
- Measurable disease per RECIST v1.1
- No prior chemotherapy for advanced disease
- ECOG performance status of 0 or 1

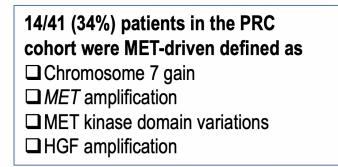
Study treatment

Lenvatinib
18 mg orally once daily

Everolimus 5 mg orally once daily

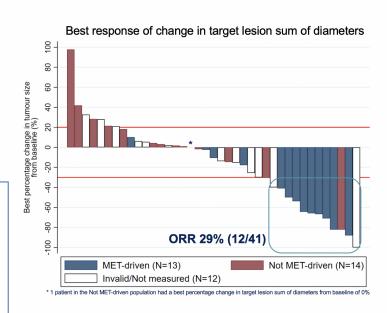
Primary objective

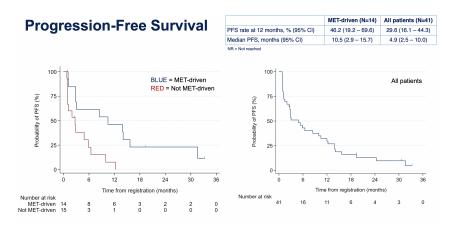

 Objective response rate by investigator assessment

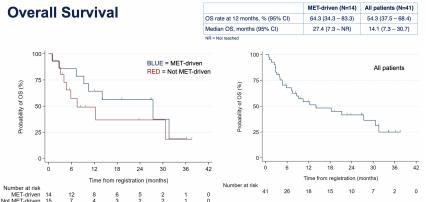

Key secondary objectives

- Progression-free survival by investigator assessment
- Overall survival
- Safety and tolerability

	pRCC (n=20)	ChRCC (n=9)	Unclassified (n=2)	Total (n=31)
ORR, %	15.0	44.4	50.0	25.8
(95% CI)	(3.2-37.9)	(13.7-78.8)	(1.3-98.7)	(11.9-44.6)
Clinical benefit rate, % (95% CI)	50	77.8	100	61.3
	(27.2-72.8)	(40.0-97.2)	(15.8-100)	(66.3-94.5)

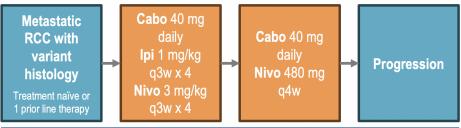

COMBOS: DURVALUMAB+SAVOLITINIB IN PAPILLARY RCC (CALYPSO)




Response in MET-driven papillary RCC patients

- Confirmed response rate in MET-driven patients was 57% (8/14)
- Median duration of response was 9.4 months

COMBOS: DURVALUMAB+SAVOLITINIB IN PAPILLARY RCC (CALYPSO)



Median OS MET-driven vs all patients: 27.4 vs 14.1 months

Median PFS MET-driven vs all patients: 10.5 vs 4.9 months

COMBOS: CABO+NIVO+IPI (CaNI)

CaNI schema

	n (%)
Any grade of AE	39 (100)
Any grade of treatment-related AE	38 (97)
Grade 5 Lethal toxicity	0
Grade 3-4 of treatment-related AE	29 (74)
Grade 3-4 elevation in AST or ALT	14 (36)
Required high dose steroids (prednisone 240 mg daily or equivalent)	17 (44)
Discontinued treatments due to toxicity	8 (21)

		Objective response, n (%)		
	Total N	PR	SD	PD
Overall	39	7 (18)	23 (59)	9 (23)
Histology				
Papillary	20	5 (25)	11 (55)	4 (20)
Chromophobe	11	1 (9)	5 (45)	5 (45)
Translocation	5	-	5 (100)	-
Other	2	-	2 (100)	-
Unclassified RCC	1	1 (100)	-	-
Sarcomatoid diff				
No	30	5 (17)	19 (63)	6 (20)
Yes	9	2 (22)	4 (44)	3 (33)
Prior therapy				
No	34	7 (21)	20 (59)	7 (21)
Yes	5	-	3 (60)	2 (40)

Primary endpoint – ORR per RECIST 1.1

Secondary endpoints – PFS, OS, safety

Ongoing trials for non-clear cell RCC

PAPMET 2 N = 200

Key Inclusion Criteria:

Metastatic pRCC (type 1 & 2) 0-1 Previous systemic therapies

Key Exclusion Criteria:

Previous cabozantinib therapy Previous aPD-1/PD-L1 checkpoint inhibitor therapy (incl. adjuvant)

> Randomization 1:1

Cabozantinib + atezolizumab

Cabozantinib

Primary end point: PFS Secondary end points: OS, ORR, adverse events

SAMETA N = 220

Key Inclusion Criteria: Met-driven metastatic/locally advanced pRCC

No previous systemic therapies

Randomization 2:1:1

Durvalumab + savolitinib

Savolitinib

Sunitinib

Randomization 2:1

Zanzalitinib + nivolumab

Sunitinib

Primary end point: PFS (durvalumab + savolitinib vs sunitinib) Secondary end points: OS, ORR, DCR, DoR, HRQoL

STELLAR 304 N = 291

Key Inclusion Criteria:

Metastatic/advanced non-clear cell RCC

No previous systemic therapies (one previous adjuvant therapy allowed)

Primary end point: PFS, ORR Secondary end points: OS

CONCLUSIONS

- ☐ Non clear cell RCC is a heterogeneous disease
- ☐ We should stop doing "non-clear RCC trials"
 - □Clinical trials by subtypes are essential
- ☐ Biomarkers are REALLY needed
- □ IO-TKI combinations (lenva-pembro/cabo-nivo) showed the best ORR
- ☐ MET alterations appear to be a good biomarker for MET inhibitors.

Muchas gracias por vuestra atención