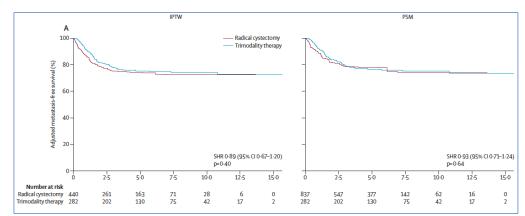
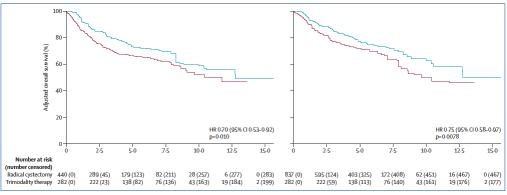
IO based combos plus radiotherapy: is this the way to go in bladder preservation?


Xavier García del Muro

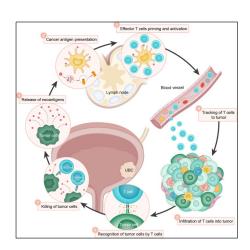

Medical Oncology Department. Institut Català d'Oncologia L'Hospitalet. Barcelona

Radical cystectomy versus trimodality therapy for muscle-invasive bladder cancer: a multi-institutional propensity score matched and weighted analysis

Material and Methods

- Retrospective analysis
- 703 patients with MIBC clinical stage T2-T3/4aN0M0 MIBC (urothelial), 421 RC and 282 TMT who would have been eligible for both TMT or RC, treated at the Massachusetts General Hospital, Boston; PMCC, Toronto; and University of Southern California, Los Angeles between 2005-2017.
- In order to compare homogenous cohorts, all patients included in this analysis had:
 - 1. Solitary tumors <7 cm
 - 2. No or unilateral hydronephrosis
 - 3. No extensive carcinoma in situ.
- Primary endpoint of interest: metastasis-free survival.

Potential mechanisms of synergy of radiotherapy and immunotherapy

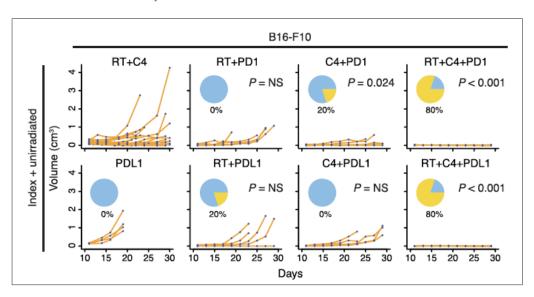


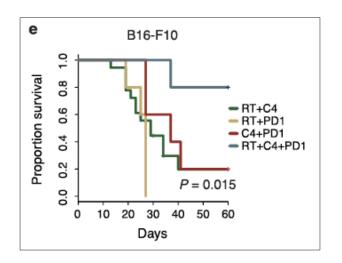
- RT promotes the ability of APC to present tumor antigens to naive T cells through antigen release, stimulation of calreticulin, and downregulation of CD47.
- MHC-1 expression and the subsequent antigen presentation leads to interaction with TCR.
- RT activate a type I interferon response through the sensing of cytoplasmic DNA via cGAS-STING.
- RT can upregulate PD-L1 and CTLA-4, and augment radiation efficacy by targeting these pathways

INCORPORATION OF IMMUNOTHERAPY TO THE MULTIMODAL BLADDER SPARING THERAPY: DIFERENT APPROACHES

- Incorporation of Immunotherapy to the multimodal therapy
 - ICI in combination with radiotherapy instead of chemotherapy
 - Chemotherapy, ICI and radiotherapy combinations

- Approaches lacking radiotherapy
 - Chemotherapy and ICI, without radiation
 - Selection based on biomarkers and response

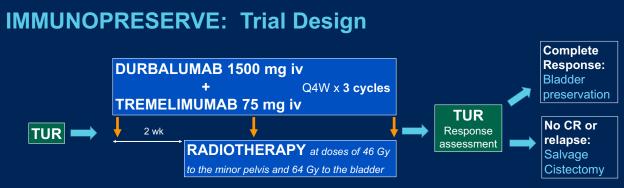

Dual immune checkpoint inhibition in combination with radiotherapy


LETTER

doi:10.1038/nature14292

Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer

Christina Twyman-Saint Victor^{1,2*}, Andrew J. Rech^{2*}, Amit Maity^{3,4}, Ramesh Rengan^{3,4}†, Kristen E. Pauken^{5,6}, Erietta Stelekati^{5,6}, Joseph L. Benci^{2,3}, Bihui Xu^{2,3}, Hannah Dada^{2,3}, Pamela M. Odorizzi^{5,6}, Ramin S. Herati^{1,6}, Kathleen D. Mansfield^{5,6}, Dana Patsch³, Ravi K. Amaravadi^{1,4}, Lynn M. Schuchter^{1,4}, Hemant Ishwaran⁷, Rosemarie Mick^{4,8}, Daniel A. Pryma^{4,9}, Xiaowei Xu^{4,10}, Michael D. Feldman^{4,10}, Tara C. Gangadhar^{1,4}, Stephen M. Hahn^{3,4}†, E. John Wherry^{4,5,6}§, Robert H. Vonderheide^{1,2,4,6}§ & Andy J. Minn^{2,3,4,6}§



 Combination of radiation and dual checkpoint blockade appears to activate non-redundant immune mechanisms, potentiating antitumor activity Clin Cancer Res 2025;31:659-66

Bladder Preservation with Durvalumab plus Tremelimumab and Concurrent Radiotherapy in Patients with Localized Muscle-Invasive Bladder Cancer (IMMUNOPRESERVE): A Phase II Spanish Oncology GenitoUrinary Group Trial

Xavier Garcia-del-Muro¹, Begoña P. Valderrama², Ana Medina-Colmenero³, Olatz Etxaniz⁴, Regina Gironés Sarrio⁵, María José Juan-Fita⁶, Marcel Costa-García⁷, Rafael Moreno⁷, Isabel Miras Rodríguez², Irene Ortiz¹, Andrés Cuéllar¹, Ferran Ferrer⁸, Francesc Vigués⁹, Roberto de Haro Piedra¹⁰, Arturo Candal Gomez¹¹, Salvador Villà¹², José Luis Pontones¹³, Yasmina Murria¹⁴, Guillermo Lendínez-Cano¹⁵, and Ramon Alemanv⁷

A safety run-in cohort was performed in the first 5 patients included to assess potential dose limiting toxicities

Translational Study:

Biomarker analyses on peripheral blood, at different time points, and pre-and post-therapy tumor samples

- <u>Peripheral blood:</u> peripheral lymphocytes immune profiling and cytokine multiplex
- Tumor biopsy: PD-L1 testing, TCR-β chain clonality, immunoscore and inflammatory stroma analysis

Safety

Treatment-Related Adverse Events

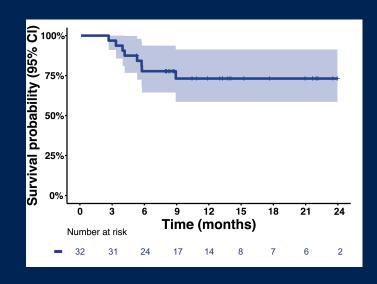
Toxicity	Any grade (%)	Grade 3-4 (%)
Any event	31 (97)	10 (31)
Diarrhea	13 (41)	4 (12)
Urinary disorders	12 (37)	1 (3)
Hyperthyroidism	8 (25)	-
Asthenia	8 (19)	1 (3)
Pruritus	7 (22)	_
Skin rash	5 (16)	1 (3)
Hypothyroidism	4 (12)	-
Acute kidney injury	2 (6)	2 (6)
Hepatitis	2 (6)	2 (6)
Peritonitis	1 (3)	1 (3)
Panhypopituitarism	1 (3)	1 (3)
Thrombocytopenia	1 (3)	1 (3)
AE leading to discontinuation	7 (22)	

Grade 5 AE was observed in one patient: peritonitis

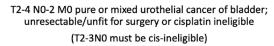
IMMUNOPRESERVE: Results

Between 1/2019 and 8/2020, 32 pts were included at 6 centers with a median follow-up: 12.7 months (5.3 -24.5 m.)

Response at the po	วรเ-แ	eaum	entiuk
	N	%	95% CI
Complete Response (≤T1)	26	81 %	(95% CI, 63.5-93


	N	%	95% CI
Complete Response (≤T1)	26	81 %	(95% CI, 63.5-93)
- T0 response - NMIBC (T1, Ta, Tis)	25 1	78 % 3 %	
Non-response (MIBC)	2	6 %	(95% CI, 0.7-21)
Not evaluated - Rejection - Clinical impairment - Death from COVID 19 - Toxic death from peritonitis	4	12.5%	

Bladder preservation


- Median follow-up: 27 months (14 -4 1 months)
- Salvage cystectomy: 2
 - Immediate 0
 - Late 2
- 12 m NMIBC local failure: 3% (95%IC, 0.2-14)
- 12 m MIBC local failure: 19% (95%IC, 7.5-35)
- 12 m Distant metastases: 13.6% (95%IC, 4-29)

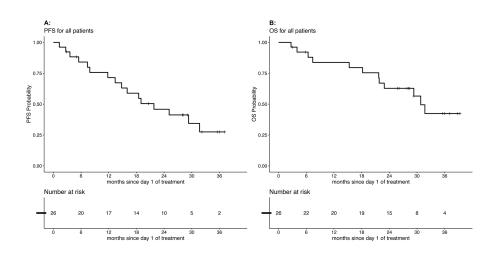
BLADDER INTACT DISEASE FREE SURVIVAL

24 m Bladder Intact DFS rate: 65% (95%CI, 50%-84%)

Concurrent durvalumab and radiation therapy (DUART) followed by adjuvant durvalumab in patients with localized UBC: a phase II study, BTCRC-GU15- 023

ECOG 0-2; GFR >30; max TUBRT attempt

DurvaRT: Durvalumab 1500 mg q 4 weekly (X 2 doses) + XRT to gross disease (64.8 Gy in 36 fractions over 7 weeks) Durvalumab to start on Day 1 Response evaluation by imaging and cystoscopy, biopsy 2 – 3 weeks post completion of DurvaRT


Adjuvant Durvalumab Monotherapy

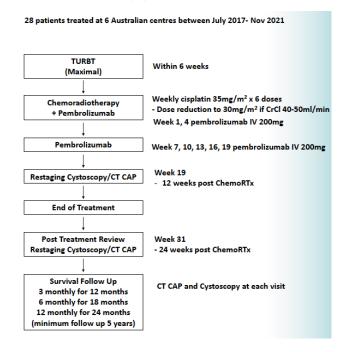
Durvalumab maintenance q4 weekly (up to 12 months; 13 doses)

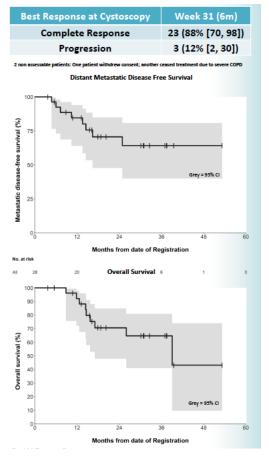
Durvalumab to start 4 weeks (±7 d) post completion of DurvaRT

CR, PR, SD

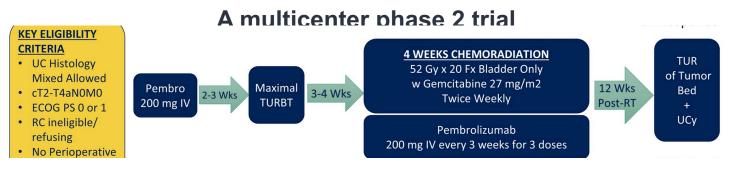
- PFS was 71.5%, median PFS was 21.8 months.
- 1-year OS was 83.8%, median OS was 30.8 months.
- CR at 8 weeks post durvaRT was 62.5%.

EUROPEAN UROLOGY ONCOLOGY 7 (2024) 469-477


available at www.sciencedirect.com journal homepage: euoncology.europeanurology.com



Pembrolizumab with Chemoradiation as Treatment for Muscle-invasive Bladder Cancer: Analysis of Safety and Efficacy of the PCR-MIB Phase 2 Clinical Trial (ANZUP 1502)

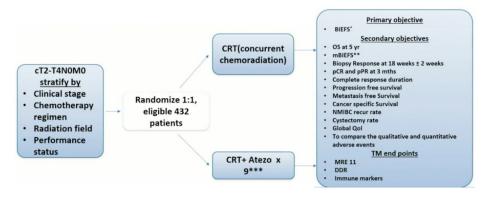

Andrew Weickhardt^{a,*}, Farshad Foroudi^a, Nathan Lawrentschuk^b, Jing Xie^c, Mark Sidhom^d,

DMFS at 2 yr is 78% (95%CI 54–90%) LRPFS at 2 yr of 87% (95% CI 64–96%) median OS of 39

Long-term outcomes of pembrolizumab in combination with gemcitabine and concurrent hypofractionated radiation therapy as bladder sparing treatment for MIUC:

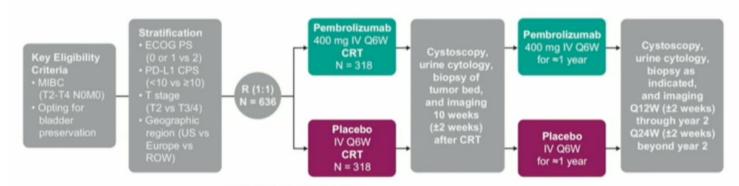
Efficacy (n=54)	2-year % (95%CI)	Median in months (range)
BIDFS	71% (69%-91%)	47.4 (33.2-not reached)
MFS	78% (64%-87%)	47.4 (47.4-not reached)
os	83% (69%-91%)	Not reached
12-week CR rate	80%	NA

12 Weeks Post-RT R	kespor	ise – Pe	er Proto	CO
12 weeks post RT Response	N=6	N=48	N=54	
CR	5 (83%)	27(56%)	32 (59%)	
PR	0	4 (8.3%)	4 (7.4%)	
NR	0	0	0	
Progression	0	1 (2.4%)	1 (1.8%)	
Not-evaluable ²	1(17%)	10 (21%)	11 (20%)	
Missed	0	3	3	
Off-Study	0	3	3	


RESULTS SAFETY-cont'd

- The most common adverse events were fatigue (20; 42%), nausea (17;35%) and diarrhea (16;33%).
- ➤ Thirteen patients (24%) experienced 17 AEs that were Grade 3 or greater.
- The Grade 3 and 4 AEs are shown in Table 3.
- ➢ Grade 3 or greater immune-related AEs includes 2 patients (4%) with colitis, 1 patient with polyneuropathy and 1 patient with grade 4 colonic perforation (initially treated but subsequently developed multiple complications and patient died due to fungemia/sepsis).

Table 3. Grade 3 and 4 AEs


Adverse Event	N (%)
Cytopenias	7 (13%)
Colitis/colonic perforation	5 (9%)
Cystitis	2 (4%)
Polyneuropathy	1 (2%)
Fatigue	1 (2%)
Hypokalemia	1 (2%)

INTACT (S/N1806): Phase III Randomized Trial of Concurrent Chemoradiotherapy with or without Atezolizumab in Localized Muscle Invasive Bladder Cancer Toxicity Update on First 213 Patients

Toxicity Grade ≥ 3	Number of patients = 213		
	CRT + A =113	CRT=100	
Any toxicity	65 (58%)	44 (44%)	
Hematological (non-immune related)	49 (43%)	36 (36%)	
Non -Heme toxicity	31 (27%)	15 (15%)	
Colitis	2 (1.7%)	2 (2%)	
Cystitis	2 (1.7%)	1 (1%)	

KEYNOTE-992: Randomized Phase III trial of Pembrolizumab versus Placebo in patients with muscle-invasive bladder cancer receiving concurrent chemoradiotherapy

Investigator's choice of:

Conventional RT (64 Gy at 2 Gy/wk over 6.5 weeks whole bladder +/- pelvic nodes) Hypofractionated RT (55 Gy at 2.75 Gy/wk over 4 weeks whole bladder only) Radiosensitizing cisplatin OR 5-FU/MM-C OR gemcitabine

Endpoints:

Primary: bladder-intact EFS (residual/recurrent MIBC, nodal or distant mets, RC, or death from any cause) Secondary: OS, MFS, time to NMIBC occurrence, time to RC, safety

Position Paper

Eligibility and Endpoints for Clinical Trials in Trimodality Therapy for Bladder Cancer

Parminder Singh^{a,*}, Leslie Ballas^b, Guru P. Sonpavde^c, Ronald C. Chen^d, Rick Bangs^e, Brian C. Bauman^f, Himanshu Nagar^g, Scott E. Delacroix^h, Seth P. Lernerⁱ and Jason A. Efstathiou^j

	Endpoint definitions
Endpoint	Definition
Bladder Intact Event Free Survival (BIEFS)	Time to local muscle invasive recurrence, LN recurrence, systemic recurrence, radical cystectomy from any cause, death from any cause
Bladder Intact Disease Specific Survival (BIDSS)	Surviving protocol treatment and bladder cancer with no evidence of distant metastases, nodal recurrence, or nonsalvageable local recurrence with intact native bladder
Bladder Intact Disease-Free Survival (BIDFS)	Time to the earliest of muscle-invasive local recurrence in the bladder, regional pelvic recurrence, DM, bladder cancer-related death, or cystectomy
Disease Specific Survival (DSS)	Surviving protocol treatment and bladder cancer with no evidence of distant metastases, nodal recurrence, or nonsalvageable local recurrence.
Distant Metastasis Free Survival at 3 years (DMFS3)	Time to development of distant metastasis outside pelvis after TMT at 3 years.
Bladder Intact Distant Metastasis Free Survival 3 years (BIDMFS3)	Time to development of distant metastases, undergoing cystectomy, or death from any cause at 3 years
Overall Survival (OS)	Time from registration to death from any cause.
Progression Free Survival (PFS)	Time to local or systemic progression or death.
Regional Failure Free Survival (RFFS)	Local or nodal recurrence within pelvis
Disease Free Survival (DFS)	Regional and distant failure and cancer specific mortality.
Cancer Specific Survival (CSS)	Time to cancer specific mortality
Bladder Intact Survival (BIS)	Time from randomization to cystectomy or death

Recommended eligibility criteria	for future clinical trials evaluating systemic therapy combination with trimodality therapy
Endpoint	Definition
Stage	Clinical stage T2-T4, N0, M0 based on cross sectional imaging preferred MRI, TURBT and examination under anesthesia. N1 patient can be included in clinical trial evaluating neoadjuvant therapy with suitable comparator arm.
Hydronephrosis	Patients with tumor associated unilateral hydronephrosis which is treated should be allowed to enroll.
Neoadjuvant/Adjuvant chemotherapy	Can be allowed if this is a predefined stratification factor
Maximal TURBT	Patients must have maximal TURBT within 70 days of randomization.
Carcinoma in Situ	Patients with diffuse CIS should be excluded. Tumor associated focal CIS is a common occurrence and should not be an exclusion
Kidney function (GFR limits)	Patients with GFR limit >25 ml/min should be eligible
Performance status	ECOG performance status of <2 should be allowed for enrollment.
Histology	Patients with mixed urothelial with squamous/adenocarcinoma/ sarcomatoid/plasmacytoid histology should be allowed. Small cell carcinoma should be excluded.

FINAL REMARKS

- Combined-modality bladder-preserving approaches including immunotherapy are feasible and safe, showing high efficacy in terms of response and eliciting bladder preservation in a large number of pts
- Different approaches are being explored, all them with promising preliminary results.
 Nevertheless, longer follow-up is still needed, focusing especially on long-term bladder preservation and survival
- However, agreement regarding assessment of response and efficacy endpoints in bladder preservation studies is needed
- Further research on these approaches as an alternative to radical cystectomy in selected patients with localized MIBC is warranted

