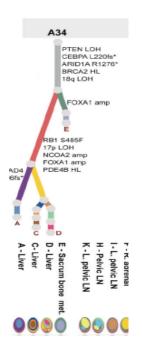

Management of mHSPC progression: coffee for all?

Enrique González Billalabeitia Hospital 12 de Octubre. Madrid


Aberrations can be at diagnosis or adquired while tumor progression

mCRPC is polyclonal and heterogeneous

A - L rib D - L adrenal
C - Liver F - R rib nod.
E - Liver I - L clavicle
G - Liver J - L iliac crest
H - Liver N - GL5 EPE
Q - GL3/5

Patient selection in mCRPC

AR dependent

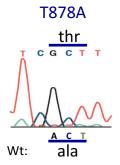
HRD (BRCA1/2; CDK12; PALB2; NGS)

MMR (MSH2 def.. IHQ/NGS)

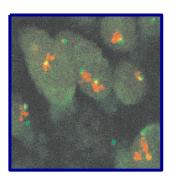
Neuroendocrine o Aggressive variant

Patient selection in mCRPC

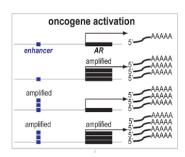
AR dependent mechanisms

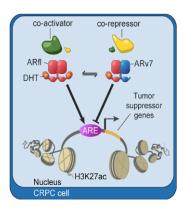

Up to 85% of lethal prostate cancers harbor Androgen Receptor Aberrations

AR mutations

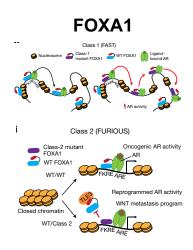

AR gain

AR Enhancer Gain

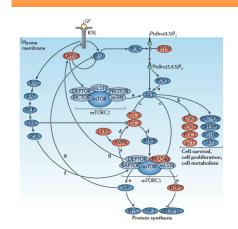

AR Splice Variants

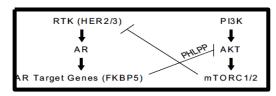

Taplin ME. N Engl J Med 1995

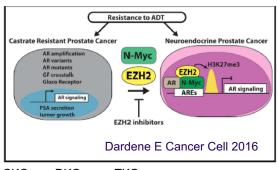
Holzbeierlein J. Am J Path 2004

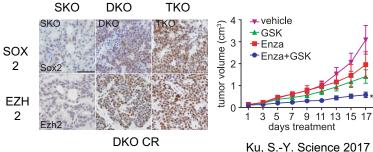

Quigley DA. Cancer Cell 2018

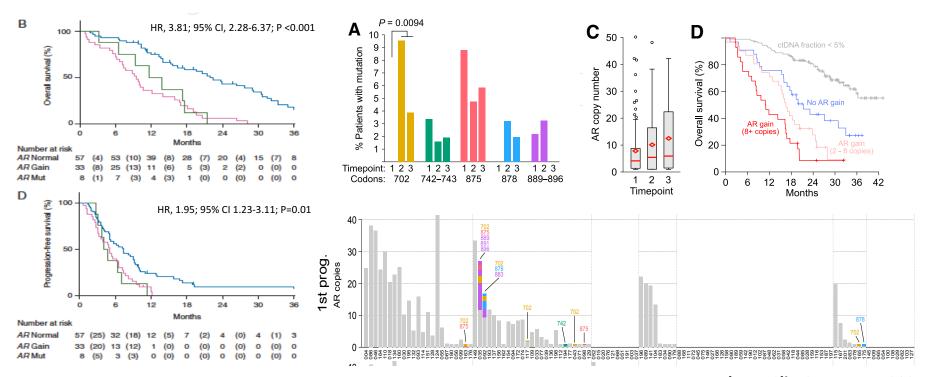
Cato L. Cancer Cell 2019


AR-Pathway regulators


AR Co-Regulators


Parolia A. Nature 2019

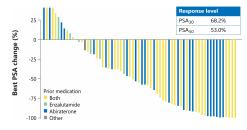

Pi3K-pathway Activation



Epigenetic modifiers

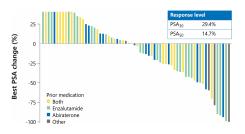
AR aberrations identify patients with worse outcome to new antiandrogens

Conteduca V. Annals of Oncology 2017

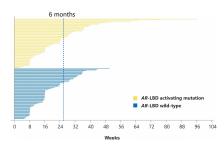

Annala M. Clin Cancer Res 2021

Opevesostat (ODM-208; CYP11A1i)

Adrenal glands Tissues producing steroid Cholesterol hormones in a male body Abiraterone 7a-OH-pregnenolone **♦** SULT2A HSD3B ₩ HSD3B HSD3B CYP17A1 HSD17B3 'a-OH-Progesterone Testosterone CYP21A ↓ CYP21A1 √ 5-α reductase 11-deoxycortisol Androstenedione Dihydro testosterone ▼ CYP11B1 Cortisol V CYP11B Prostate cancer tissue Androgen / precursors Glucocorticoid → Androgen deprivation therapy (ADT) Mineralocorticoid

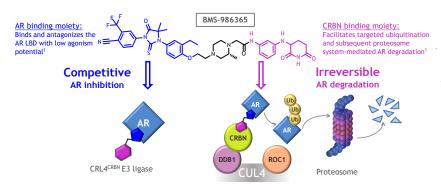

CYPIDES (ESMO 24)

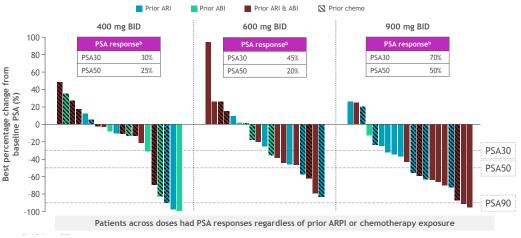
AR-LBD activating mutation



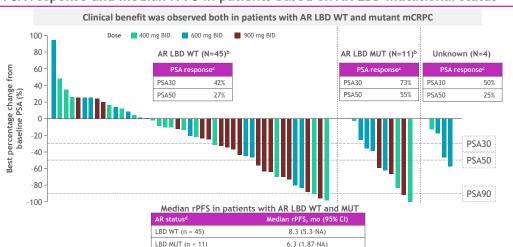
- At time of analysis, 2 AR-LBD mutated patients and 15 AR-LBDwt patients were ongoing on treatment.
- Durable responses have occurred in patients with and without AR-LBD mutation.

AR-LBD wild-type

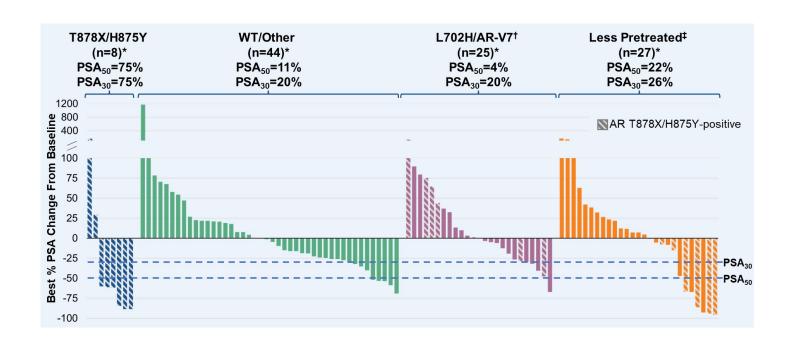

Duration of treatment



Fizazi K. ESMO 24


AR Degraders by LBD mutational status

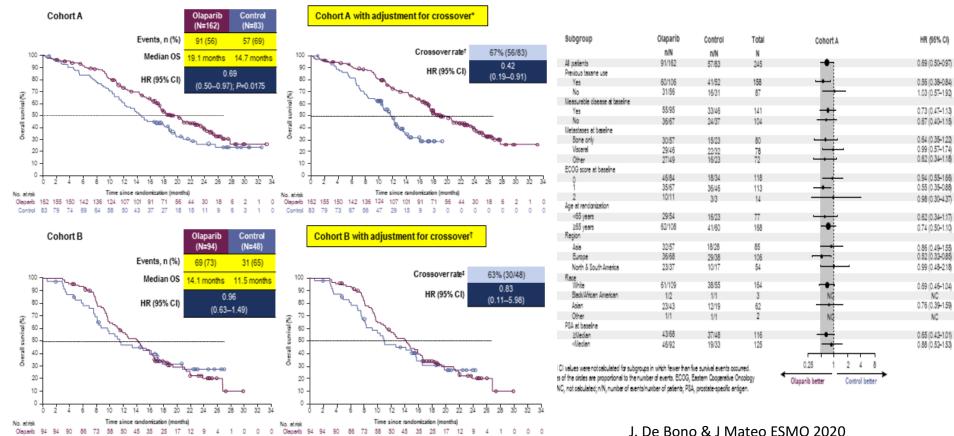
AR degraders and inhibitors



PSA response and median rPFS in patients based on AR LBD mutational status^a

Rathpopf D. ESMO 24

ARV-110 (Bavdegalutamide)

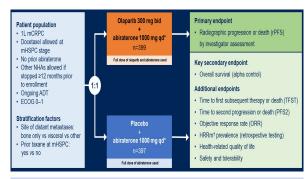

Resultados disponibles con Inh. de AKT

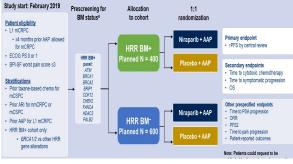
	IPATASERTIB	CAPIVASERTIB		
Clinical trial	IPATential	ProCAID		
Phase	Ш	П		
Number of patients enrolled	1101	150		
Primary endpoint	rPFS	cPFS		
Stage of the disease	mCRPC	mCRPC		
Association to AKTi	Abiraterone + Prednisolone	Docetaxel + Prednisolone		
Control	Placebo	Placebo		
Primary outcome's HR	0.77 (95% CI, 0.61–0.98); p = 0.034	0.92 (80% CI, 0.73–1.16); p = 0.32		
Grade \geq 3 adverse events	70%	62%		
AEs leading to treatment discontinuation	21%	23%		

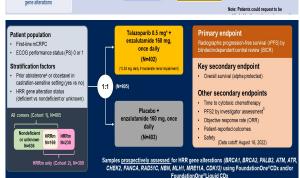
Selección de Pacientes en mCRPC

HRD (BRCA1/2; CDK12; PALB2; NGS)

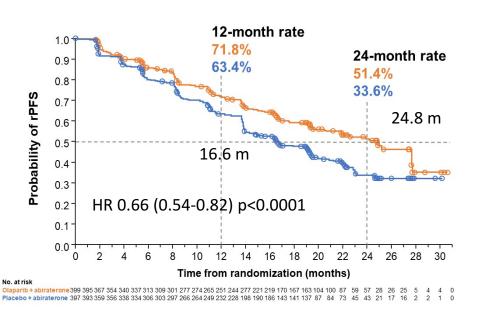
Olaparib improves OS in HRR defective tumor BRCA1/2 derive the greatest benefit-

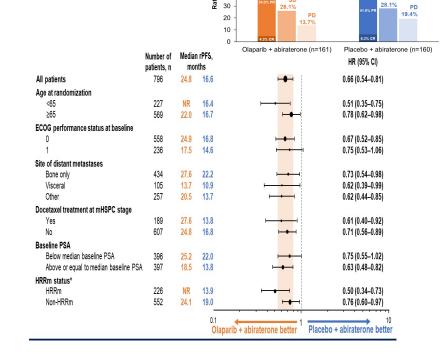

Hussain & J Mateo. M. NEJM 2020


	Olaparib			Niraparib	Talazoparib	
Trial	N. Clarke et al	PROPEL	BRCAAWay	MAGNITUDE	TALAPRO- 2	ZZ-First
Phase	Phase 2 rand	Phase 3	Phase 2	Phase 3 randomized	Phase 3 randomiz ed	Phase 2 (2:1)
Treatment	AAP +/- Olaparib	AAP +/- Olaparib	AAP, Olap or AAP-Olap	AAP +- Niraparib	Enza +- talazopari b	Enza +- Talazoparib
Scenario	CPRCm pre- treated (Taxane & ARSI)	CPRCm pre- treated (Taxane)	CPRCm BRCA mut	CPCRm 1L w/o DDR	CPRCm	CPHSm naive
N	142	796	70	765	1037	54
P. Endpoint	rPFS	rPFS	PFSr (BRCA/ATM)	rPFS	rPFS	PCS-CR
Population	All commers	All commers	DDR mut	Non-DDR & DDR	All Commers & DDR	All Commers
Molecular Testing	Central Lab	Central (Tissue & ctDNA)	Central Lab (tissue)	Central (Tissue & ctDNA)	Central Lab (Foundati on Medicine)	Academic Lab
ID	NCT0197221	NCT01682772	NCT03012321	NCT03748641	NCT033951 97	NCT04332744
Publication	Lancet Oncol 2018	NEJM Evid 2022 Lancet Oncol 2023	ASCO 2022	JCO 2023	ASCO-GU 2023 Lancet-2023	NR


PROPEL

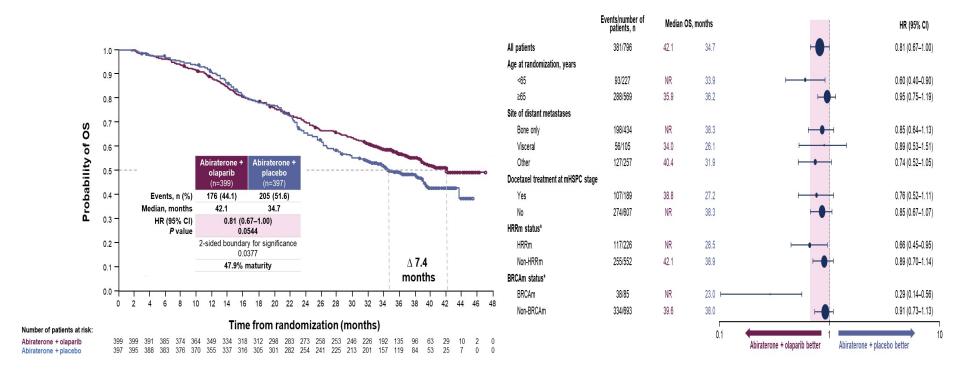
MAGNITUDE


TALAPRO-2

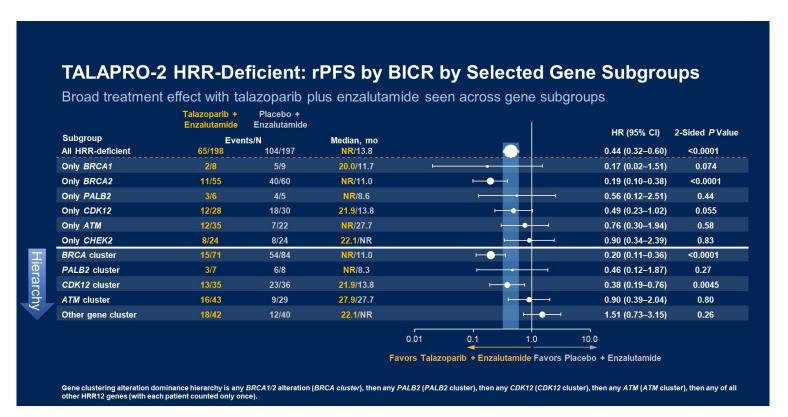


PROpel: Primary Endpoint rPFS

Retrospective NGS solid and Liquid Foundation One. HRR Genes (14 genes): ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L

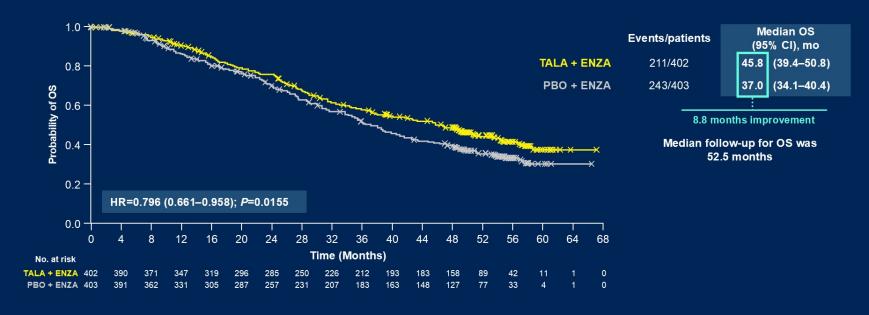

OR 1.60 (95% CI 1.02-2.53) P=0.0409*

> ORR 48.1%


58.4%

SD

PROpel: OS analysis



TALAPRO-2 HRR-Deficient Expanded Cohort

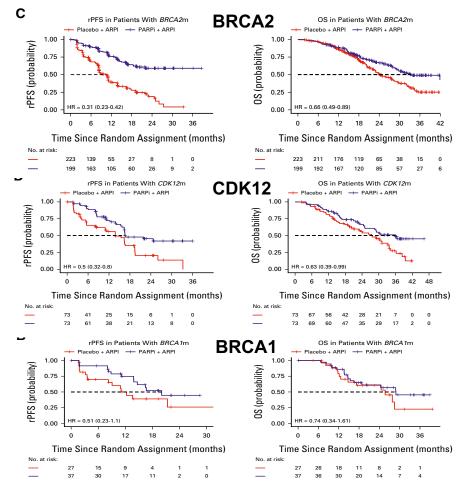
Overall Survival (Final Analysis)

20.4% reduction in risk of death, >8 months improvement in median OS

For statistical significance at the final overall survival analysis, the stratified log-rank 2-sided P value needed to be ≤0.022 based on a group sequential design with O'Brien-Fleming spending function.

Data cutoff: September 3, 2024.

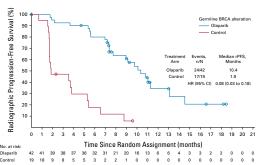
FDA Pooled Analysis of Six randomized phase 3 clinical trials


Benefit from PARPi is not the same across DNA damage repair

PROFOUND PROPEL

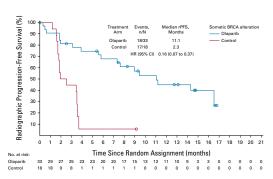
TRITON-2 MAGNITUDE

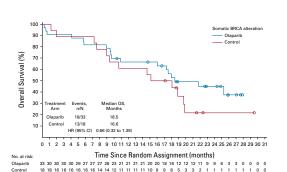
TALAPRO-1 TALAPRO-2


BRCA2 (N=422).√
ATM (N=268) †
BRCA1 (N= 64)
BRCA1 (N= 146) √
CDK12 (N= 146) √
CHEK2 (N=172) †
PALB2 (N= 41)

Fallah J et al. J Clin Oncol 2024

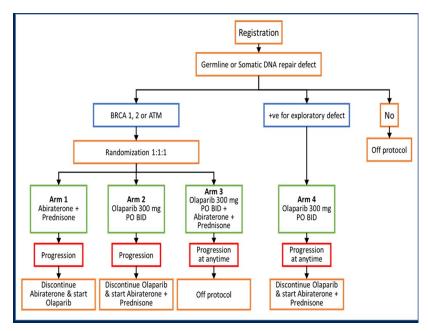
BRCA2 altered mCRPC, either of germline or somatic, Benefit from Olaparib

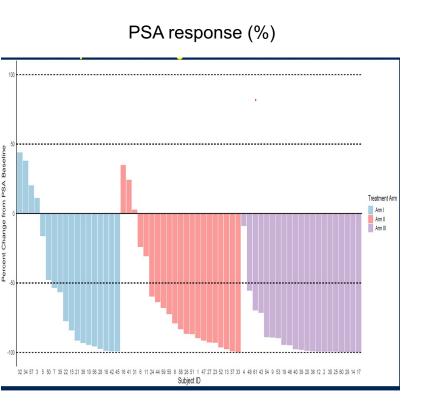




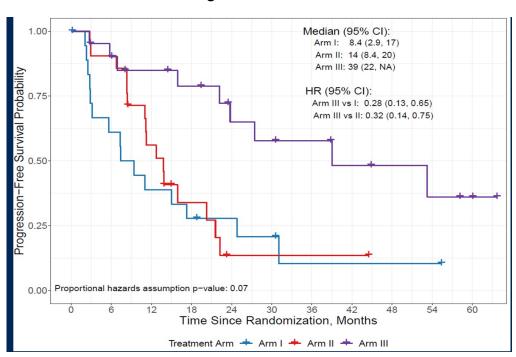
Germline BRCA alteration | Solution | Solut

19 19 18 18 18 18 17 17 16 15 14 13 12 12 10 10 9 8 8 7 6 6 6 6 6 6 6 5 5 2 2 1 0


Somatic

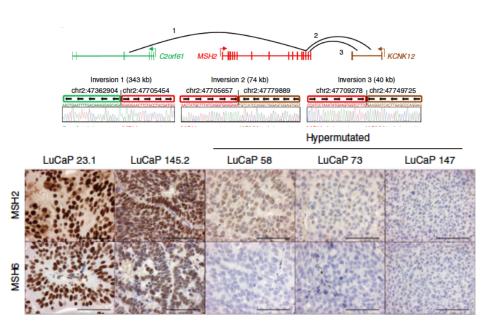


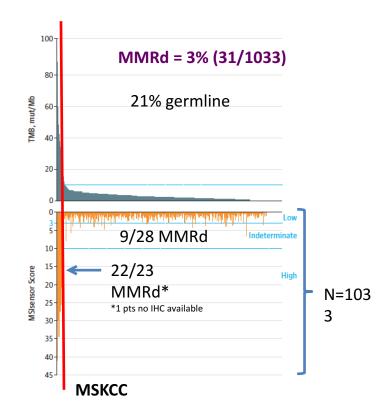
BRCAAway: A Randomized Phase 2 Trial of Abiraterone, Olaparib, or Abiraterone + Olaparib in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC) bearing Homologous Recombination-Repair Mutations (HRRm)


- Eligibility: mCRPC, no prior exposure to PARP-I, AR-I, or chemotherapy for mCRPC, washout of antiandrogen (for mHSPC), radiation, and other investigational agents.
- Eligible pts underwent tumor next-generation sequencing (NGS) & germline testing; pts with inactivating BRCA1/2 and/or ATM alterations were randomized 1:1:1 to:
 - Arm I: abiraterone (1000 mg qd) + prednisone (5mg bid),
 - Arm II: olaparib (300 mg bid)
 - Arm III: olaparib + abiraterone/prednisone
- Arm I and II pts could cross over at progression.

Olaparib plus AAP derives the greater Benefit in BRCA mut mCRPC

Progression Free Survival

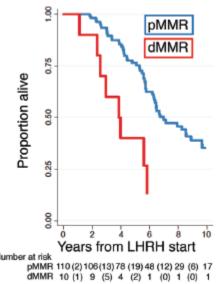



Selección de Pacientes en mCRPC

MMR (MSH2 def.. IHQ/NGS)

Advanced Pca is associated with Complex Rearrangements in MMR, most frequently MSH2 and MSH6

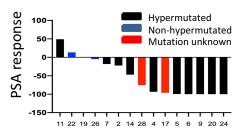
IHC can be usefull and easily accesible

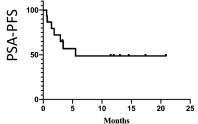


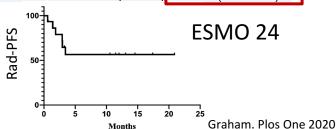
MMRd is associated with more aggresive disease

	Ritch and colleagues (this study)	Abida and colleagues, 2018 (3)	Rodrigues and colleagues, 2018 (4)	Antonarakis and colleagues, 2019 (6)
Material analyzed	ctDNA	Tissue	Tissue	Tissue
Prevalence of MMRd/MSI-H	3.7% (16/434)	3.1% (32/1,033; all patients; 4.5% of 356 patients with CRPC)	8% (10/124)	10% (13/127)
Clinically evaluable MMRd patients	11	32	10	13
Median age at diagnosis (range)	74 (61-80)	64.5 (39-85)	62.9	64
GGG ≥ 4 at diagnosis	73% (8/11)	53% (17/32)	78% (7/9)	77% (10/13)
T stage > 3 at diagnosis	89% (8/9)	_	80% (4/5)	77% (10/13)
Metastatic disease at diagnosis	45% (5/11)	44%	63% (5/8)	46% (6/13)
Definitive local therapy	36% (4/11)	_	40% (4/10)	_
Median PSA at diagnosis (Q1-3)	26.1 (11.6-90.5)	38.5 (range 0.9-701.3)	76 (45-155)	10 (5.4-43)
Median PSA at 1L CRPC therapy (range)	23 (7.8-188)	_	_	_
ECOG PS < 2 at 1L CRPC	70% (7/10)	_	_	_
Median TMB (mut/Mb) from targeted sequencing	31.1(20.3 in WES)	_	_	18-21
Germline MMR gene mutation	0.2% (1/433)	0.7% (7/1,033)	0.8% (1/124)	2.4% (3/127)
Time from ADT to CRPC, median (range, months)	9.1 (5.7-12.6)	8.6 (1.2-54.2)	_	_
Time on 1L ABI/ENZ for mCRPC, median (range, months)	3.9 (0.9-13.9)	9.9 (3-34.5)	_	24 (5-NR)
PSA50 to 1L ABI/ENZ	50% (5/10)	-	_	83% (5/6)

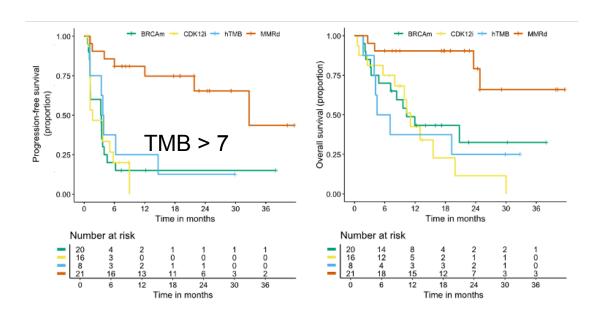
Note: Only 11 of 16 MMRd patients identified in this study had complete clinical data available for analysis.

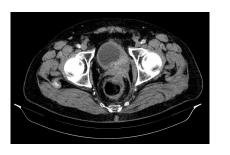

Abbreviations: 1L, first-line; ABI, abiraterone; ECOG PS, Eastern Cooperative Oncology Group Performance Status; ENZ, enzalutamide; PSA50, PSA decline ≥50% from baseline.



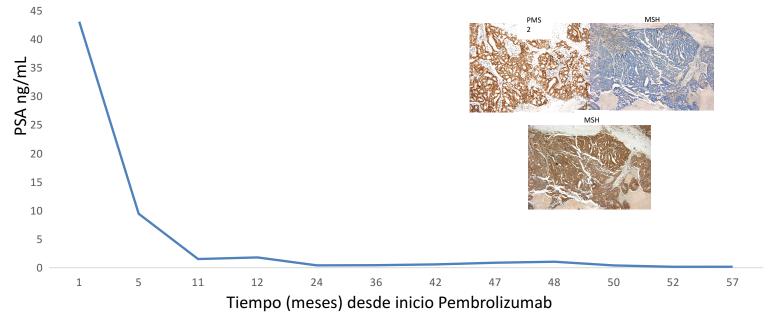

Ritch. Clin Cancer Res 2020 Abida W. JAMA Oncol 2018 Rodrigues. J Clin Invest 2018 Antonarakis E. Eur Urol 2019

Immunotherapy is effective in MMRd PCa

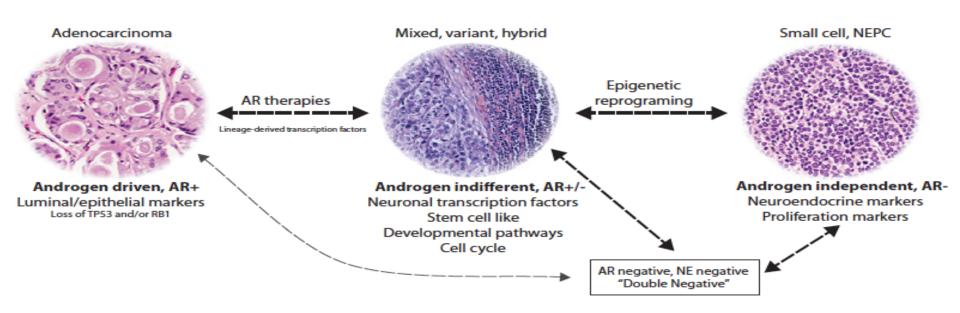

		Antonarakis et			
	Abida et al.	al.	Ritch et al.	Graham et al.	Van Wilpe et al.
	N = 32	N = 13	N = 11	N = 27	N= 71
GS 8-10, no. (%)	17 (53)	10 (77)	8 (73)	19 (70)	NR
Metastatic Disease at Diagnosis, no. (%)	14 (44)	6 (46)	5 (45)	13 (48)	40 (59%)
Presence of Ductal/Intraductal Histology, no. (%)	1 (3)	3 (23)	Not Reported	8 (30)	2 (3%)
Presence of Pure Neuroendocrine Histology, no. (%)	3 (9)	1 (8)	Not Reported	0 (0)	0(0%)
Median Time to CRPC, mos.	8.6 (range 1.2–54.2)	55 (95% CI: 50–73)	9.1 (range 5.7–12.6)	14.2 (95% CI: 8.0–32.6)	NR
PSA50 response to 1st line abi/enza for mCRPC, no. (%)	Not Reported	5 (83)	Not Reported	10 (62.5)	NR
Median PFS on 1st line abi/enza for mCRPC, mos.	9.9 (range 3–34.5)	26 (95% CI: 6-NR)	3.9 (0.9–13.0)	8.56 (95% CI: 3.73–9.51)	NR
Received PD-1 blockade, no. (%)	11 (34)	4 (31)	Not Reported	17 (61)	100 % (Pembro 76%; Nivo 18%; Atezo 6%)
PSA50 response to PD-1 blockade, no. (%)	6 (54.5)	2 (50)	Not Reported	8 (53)	52 (60%)
Median PFS on PD-1 blockade, mos.	Not Reported	9 (95% CI: 4-11)	Not Reported	Not Reached (1.87-NR)	8.3 m (5.5 – 17.4)



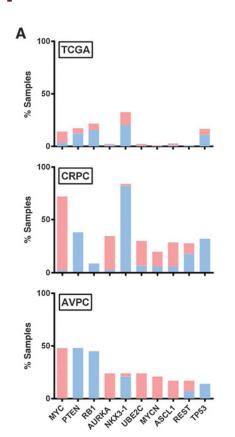
MMRd Benefit from Ipilimumab /Nivolumab

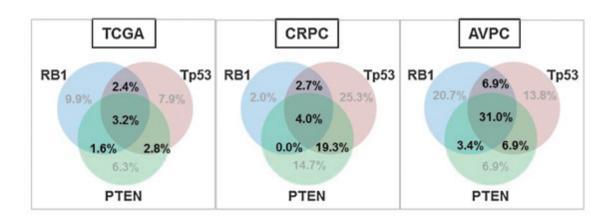

MMRd consistent benefit

- 3% (17/460)
- PSA 50 response: 86% en MMR
- Most-responses are durable

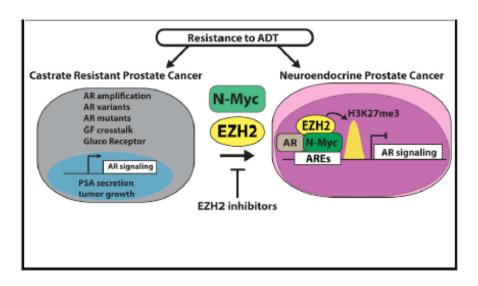

Pembrolizumab (35 ciclos)

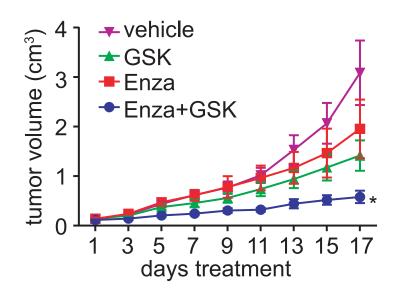
Pembrolizumab rechallenge


Selección de Pacientes en mCRPC

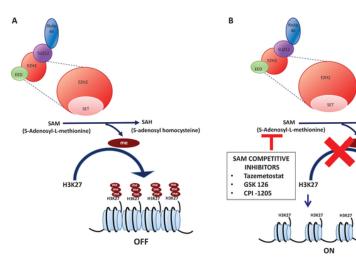

Neuroendocrine or Aggressive Variant

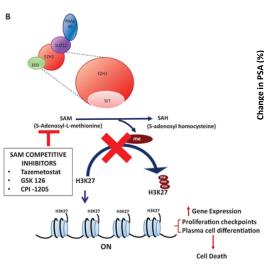
Neuroendocrine Dedifferenciation

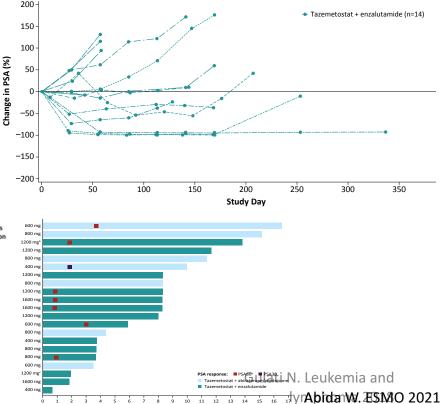

Agressive Variant are associated with AR independence and loss of TSG: RB1, PTEN & TP53



Aparicio, A. M. et al. Clin Cancer Res 2016.

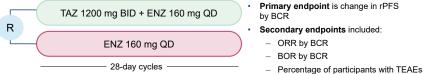

In prostate Cancer EZH2 mediates AR independence





EZH2 mediates H3K27 methylation.

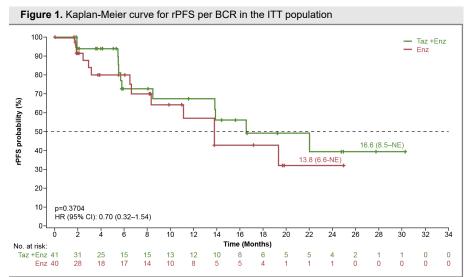
Tazemetostat (EZHi) demonstrates promising activity



Treatment Duration (Months)

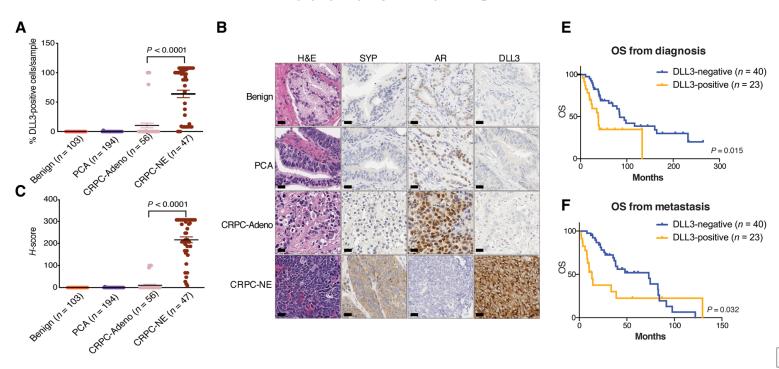
EZH2 inhibition is to be explored in phase 3 trials

Chemotherapy-naïve adult patients with progressive mCRPC who have progressed on abiraterone acetate, with ECOG PS 0 to 1, and adequate organ function


Dosing schedule and endpoints

Results

Baseline demographics and disease characteristics

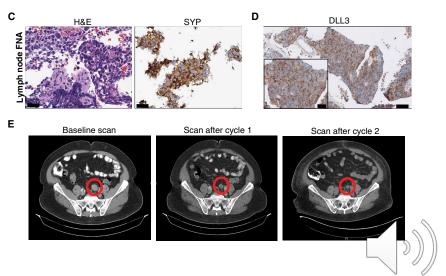

	Randomized	Median age	White	ECOG PS 0	Median time from last disease progression	Median PSA
TAZ+ENZ	41/81 patients	72.0 years	85.4%	56.1%	1.05 months	8.30 µg/L
ENZ	40/81 patients	68.5 years	77.5%	55.0%	0.94 months	7.68 µg/L

TAKE-HOME MESSAGE

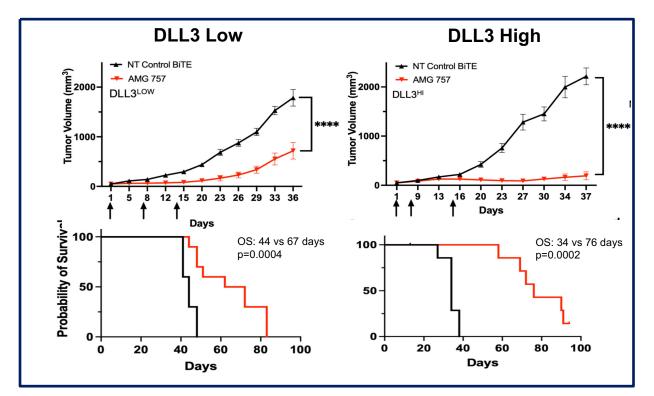
- TAZ did not result in a statistically significant improvement in rPFS vs. ENZ in patients with mCRPC (HR [95% CI], 0.70 [0.32–1.54]; p=0.3704)
- · No new safety signals observed

DLL3 is preferentially expressed in NEPC

DLL3 in NEPC vs AdenoCRPC 76% vs 12.5%


Puka L. Science Transl Med 2019 Chou J. Cancer Res 2022

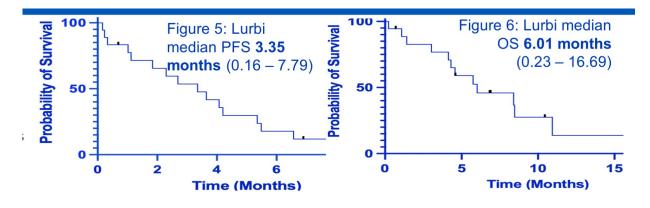
DLL3 Antibody Drug Conjugate (ADC) Rovalpituzumab Tesirine (DLL3 – PBD)

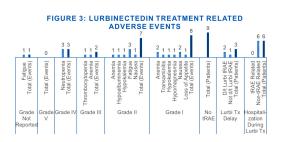

DLL3 ADC mostly benefit DLL3 high PDX

NCI-H660 xenografts (DLL3 high) DU145 xenografts (DLL3 low) IgG1LD6.5 (0.3 mg/kg) IgG1LD6.5 (0.3 mg/kg) 2000 SC16LD6.5 (0.3 mg/kg) 1000 Tumor P < 0.000120 Days after treatment Davs after treatment LTL352 PDXs (DLL3 high) WCM1262 PDOX (DLL3 low) 2500 IaG1LD6.5 (1.6 ma/ka) --- laG1LD6.5 (1.6 ma/ka) SC16LD6.5 (1.6 mg/kg) 4000 SC16LD6.5 (1.6 mg/kg) 1500 1000 Days after treatment Days after treatment

Patient enrolled in a phase 1 trial with Rovalpituzumab

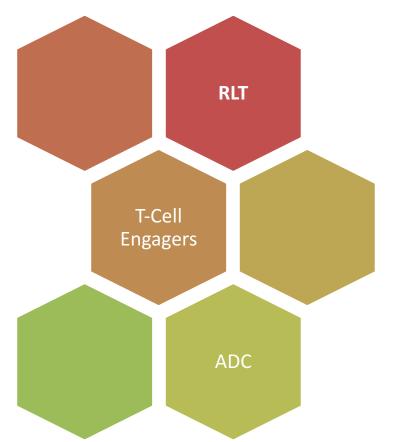
AMG 757 (tarlatamab), a half-life-extended bispecific T cell engager (BiTE®) immunotherapy that redirects CD3-positive T cells to kill DLL3-expressing cells




Abstract 164 (437556): Lurbinectedin in Prostatic Small Cell and Neuroendocrine Carcinoma

Haley Meyer¹, Rajitha Sunkara², Himisha Beltran², Emily Rothmann², Kevin Dale Courtney³, Andrew J. Armstrong⁴, Andrea Lippucci⁵, Melissa L. Stanton¹, Alan Haruo Bryce¹

¹Mayo Clinic Arizona, ²Dana-Farber Cancer Institute, ³University of Texas Southwestern Medical Center, ⁴Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, NC ⁵Duke University Medical Center Contact: meyer.haley2@mayo.edu



CONCLUSIONS SC/NEPC is an aggressive malignancy associated with a poor prognosis. PBC is an effective first-line treatment, but its duration of response is limited. Treatments second-line and beyond are major clinical challenges, as evidence to support subsequent therapies is lacking.

Lurbi is a well-tolerated and active treatment option for patients with SC/NEPC. Large-scale, prospective studies are needed to determine the role of Lurbi in the treatment of SC/NEPC.

Other Treatments

ORIGINAL ARTICLE

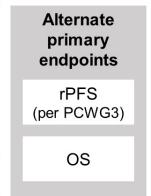
Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

Centrally read PSMA PET imaging criteria

- ≥ 1 PSMA-positive metastatic lesion Positive = 68Ga uptake > liver
- No PSMA-negative metastatic lesions
- Bone with soft tissue component ≥ 1.0 cm
- Lymph node ≥ 2.5 cm
- . Solid organ ≥ 1.0 cm

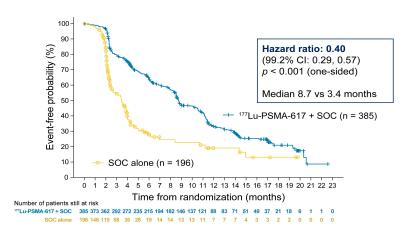
O. Sartor, J. de Bono, K.N. Chi, K. Fizazi, K. Herrmann, K. Rahbar, S.T. Tagawa, L.T. Nordquist, N. Vaishampayan, G. El-Haddad, C.H. Park, T.M. Beer, A. Armour, W.J. Pérez-Contreras, M. DeSilvio, E. Kpamegan, G. Gericke, R.A. Messmann, M.J. Morris, and B.J. Krause, for the VISION Investigators*

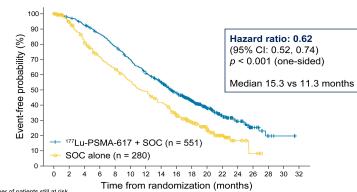
Alternate primary Key secondary endpoints endpoints Time to first symptomatic Radiographic progression-free survival rPFS) per PCWG3 RECIST v1.1 overall response rate Overall survival (OS) RECIST v1.1 disease control rate


Eligible patients

- Previous treatment with both:
 - ≥1ARPI
 - 1–2 taxane regimens
- Protocol-permitted SoC planned before randomization
 - Excluding chemotherapy, immunotherapy, radium-223 or other investigational drugs^a
- ECOG PS 0–2
- Life expectancy > 6 months
- PSMA-positive mCRPC on PET/CT with 68Ga-PSMA-11b

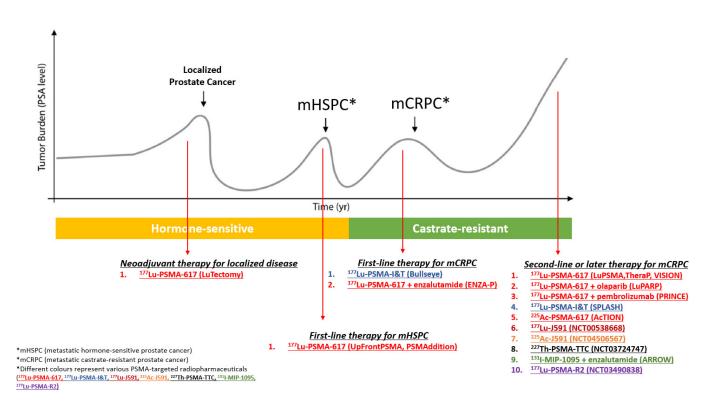
Randomization stratification


- ECOG PS (0–1 or 2)
- · LDH (high or low)
- Liver metastases (ves or no)
- · ARPI in SoC (yes or no)

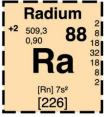

Primary Endpoint

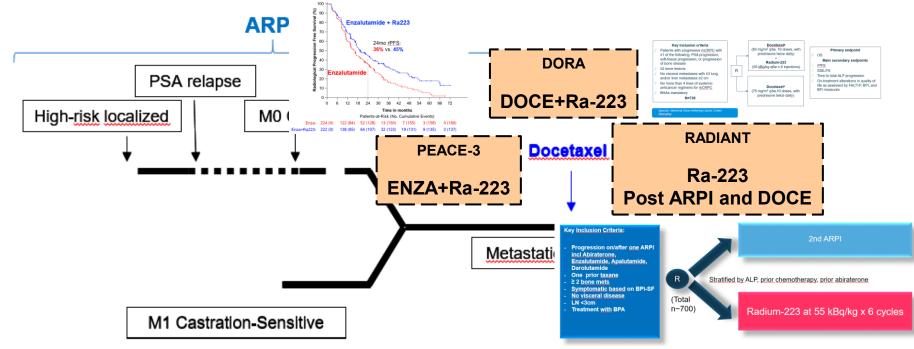
	rPFS analysis set (n = 581)			n = 581)	All randomized (N = 831)		
		SMA-617 (n = 385)	_	OC alone (n = 196)	¹⁷⁷ Lu-PSMA-617 + SOC (n = 551)		
Age, median (range)	71.0	(52–94)	72	2.0 (51–89)	70.0 (48–94)	71.5 (40–89)	
Race, n (%) White Black/African-American Asian	29	(87.3) (7.5) (1.6)		166 (84.7) 14 (7.1) 9 (4.6)	486 (88.2) 34 (6.2) 9 (1.6)	235 (83.9) 21 (7.5) 11 (3.9)	
ECOG status, n (%) 0 or 1 2		(91.4) (8.6)		179 (91.3) 17 (8.7)	510 (92.6) 41 (7.4)	258 (92.1) 22 (7.9)	
Site of disease, n (%) Lung Liver Lymph node	47	(9.1) (12.2) (50.1)		20 (10.2) 26 (13.3) 99 (50.5)	49 (8.9) 63 (11.4) 274 (49.7)	28 (10.0) 38 (13.6) 141 (50.4)	
Number received, median (range)							
Androgen receptor pathway inhibitor		1.0 (1–5	5)	1.5 (1–4)	1.0 (1–5)	2.0 (1–4)	
Taxane regimen		1.0 (1–3)		1.0 (1–3)	1.0 (1–3)	1.0 (1–3)	
Patients who received more than one, n (%)							
Androgen receptor pathway inhibitor 172 (4		172 (44.	7)	98 (50.0)	253 (45.9)	152 (54.3)	
Taxane regimen		178 (46.	2)	94 (48.0)	226 (41.0)	124 (44.3)	

rPFS



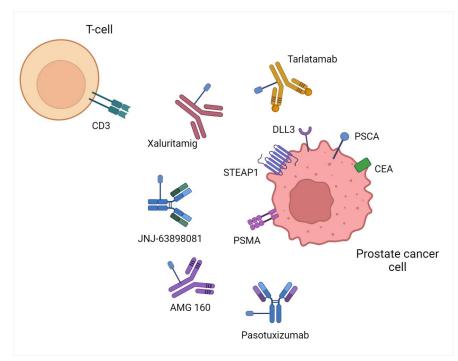
Overall Survival



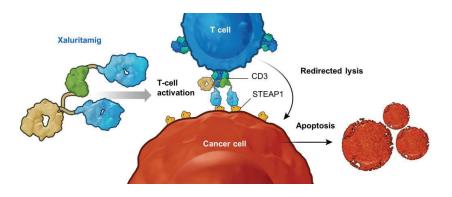

Number of patients still at risk "LuPSMA-617 + SOC 561 535 506 470 425 377 332 289 236 166 112 63 36 15 Sartor O. NEJM 2021

What's next?

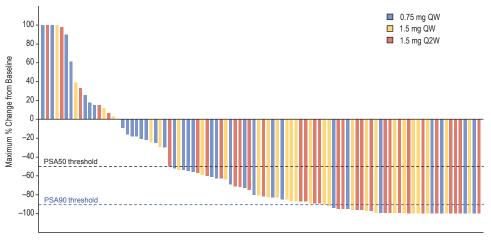
6- More Phase 3 trials data to come for Radium-223?



Tumor Antigen Targets in Prostate Cancer


Table 1. TAAs and their expression in type of prostate cancer versus their normal distribution.

Tumor-associated antigen	Cell/tissue distribution
PSCA	Prostate adenocarcinoma, urothelial, skin,
	esophagus, neuronal, stomach
PSMA	Prostate adenocarcinoma, prostate acinar
	epithelium, proximal tubular cells, glial cells,
	jejunal brush border cells, salivary glandular cells
STEAP-1	Prostate adenocarcinoma, bladder, ovary, bone
	marrow, cardiac, respiratory
DLL3	Neuroendocrine prostate cancer (NEPC), neurons,
	pancreatic islet cells, pituitary
CEA	NEPC , urogenital, respiratory, gastrointestinal


Dorff T et al. CCR, 2022

Xaluritamig (STEAP1-CD3 BITE)

	0.75 mg QW	1.5 mg QW	1.5 mg Q2W	Total
PSA50, n/N (%)	12/33 (36.4)	18/30 (60.0)	17/32 (53.1)	47/95 (49.5)
PSA90, n/N (%)	7/33 (21.2)	9/30 (30.0)	11/32 (34.4)	27/95 (28.4)
ORR, n/N (%)	4/27 (14.8)	4/21 (19.0)	6/21 (28.6)	14/69 (20.3)

Part 1: AMG 509 Dose Expansion (N = 95)

Bispecific T-Cell Engagers in Prostate Cancer							
	Pasotuxizumab ¹	JNJ-63898081 ²	AMG 160 ³	LAVA-1207 ⁴	Xaluritamig⁵		
Patient Population	mCRPC with prior progression on ≥ 1 taxane and abiraterone and/or enzalutamide	mCRPC with prior progression on taxane or ARPI	mCRPC with prior progression on 1 to 2 taxane-based regimens and ARPI	Treatment refractory mCRPC	mCRPC with prior progression on ARPI and – 2 taxane regimens		
Study Design	Phase 1 Dose escalation	Phase 1 Dose escalation + dose expansion	Phase 1 Dose escalation + dose expansion	Phase 1/2a Dose escalation + dose expansion	Phase 1 Dose escalation		
umor Antigen Target	PSMA	PSMA	PSMA	PSMA	STEAP-1		
Primary Endpoint	Safety, MTD	Safety, anti-tumor response	Safety, MTD, RP2D	Safety, RP2D	Safety, MTD, RP2D		

39

30 (76.9)

38 (97.4)

2 of 26 (7.7)

0 of 23 (0)

17 of 27 (63%) in SC

cohort

2 of 12 (16.7%) in IV

cohort

66.7 - 0

41 - 0

133

22 (16.5)

128 (96.2)

132 (99.2)

42 of 133 (31.6)

7 of 59 (10.6)

3.8(3.5 - 4.9)

30 of 81 (37%) in dose

escalation

29 of 53 (55%) in dose

expansion

97.7 - 20.3

53.2 - 23.4% of dose

escalation cohort (n = 77) ¹ Hummel H et al., Immunotherapy, 2020; ² Lim E et al., CGUC, 2023; ³ Dorff T et al., CCR, 2024; ⁴ Mehra N et al., ASCO 2023; ⁵ Kelly W et al., Cancer Discovery, 2023; ⁶ Aggarwal R et al., ASCO 2024 21

20

4(3-10)

0

~ 10 - 0

~ 45 - 0

47

12 of 39 (30.7)

0 of 18 (0)

30 of 31 (96.7%) in SC

cohort

0 of 16 (0) in IV cohort

6 - 2.1

34 - 2.1

No. of Patients

Visceral Metastases, n

(%) Median number of prior lines of therapy, n

(range) Prior Taxane, n (%)

Prior ARPI, n (%)

PSA50 Responses, n

(%)

ORR, n (%)

Median rPFS, months

(95% CI)

Antidrug antibodies, n

(%)

CRS, any G - G ≥ 3 (%)

Fatigue, any G – G ≥ 3

ritamig⁵ Tarlatamab⁶ C with prior on ARPI and 1

97

51 (53)

4(1-9)

82 (85)

96 (99)

43 of 87 (49)

16 of 67 (24)

49 of 90 (54%)

72 - 2

45 - 11

Metastatic de novo or treatment-emergent NEPC with prior progression on ≥ 1 platinum CT or ARPI

Phase 1b Dose expansion DLL3

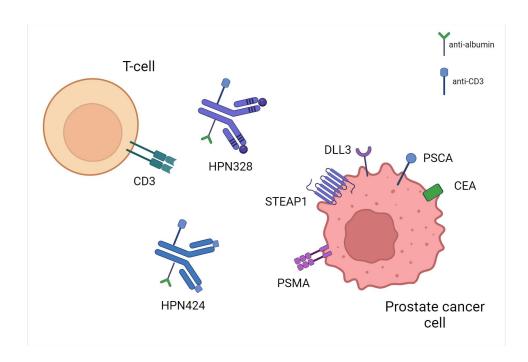
Safety

40

4 of 38 (10.5) in all pts, 4

of 18 (22.2) in DLL3+ pts

2.1 for all pts, 3.7 for


DLL3+ pts

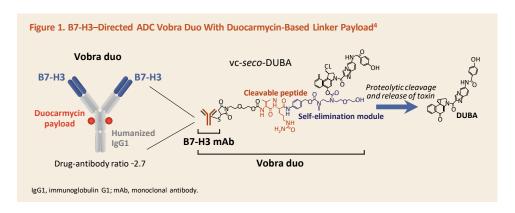
75 - 2.5

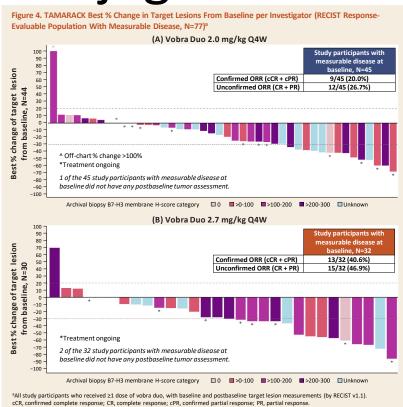
3(2-4)

Trispecific T-Cell Engagers

- The third binding domain can be used for¹:
 - Dual targeting of tumor-associated antigens
 - Dual targeting of T-cell receptors
 - Fusion to human serum albumin
 - Extends half-life, allowing for more even drug concentration and less frequent dosing²

¹ Tapia-Galisteo A et al., *Journal of Hematology & Oncology*, 2023


Trispecific T-Cell Engagers in Prostate Cancer


	HPN424 ¹	HPN328 ²	
Patient Population	mCRPC with receipt of > 2 prior systemic therapies Prior CT allowed but not required	Relapsed/refractory, metastatic NEPC, small cell lung cancer (SCLC), and other NEC associated with DLL3 expression	
Study Design	Phase 1/2a Dose escalation + dose expansion	Phase 1/2 Dose escalation	
Tumor Antigen Target	PSMA	DLL3	
Primary Endpoint	Safety, tolerability and determination of MTD/RP2D	Safety, MTD, recommended dose for expansion, pharmacokinetics	
No. of Patients	89	97	
Visceral Metastases, n (%)	-	-	
Median number of prior lines of therapy, n (range)	5 (1 – 12)	3 (1 – 7)	
Prior Chemotherapy, n (%)	65 (73)	-	
Prior ARPI, n (%)	87 (98)	-	
PSA50 Responses, n (%)	4 of 74 (5)	-	
ORR, n (%)	-	17 (41)	
CRS, any G – G ≥ 3 (%)	69 - 4	63 - 3	
Fatigue, any G – G ≥ 3 (%)	45 - 3	37 - 2	
Anemia, any G – G ≥ 3 (%)	31 - 11	-	

¹ De Bono J et al., **ASCO 2021**; ² Beltran H et al., **ASCO GU 2024**

Antibody Drug Conjugates

Vobra Duo

Take Home Messages

- Pca treatment is moving towards personalization
 - AR mut, HRD, MMR & NE
- New targets are comming:
 - RLT (PSMA, KLK2...)
 - T-Cell Engagers (STEAP1, PSMA, PSCA, KLK2..)
 - Antibody drug conjugates (B7H3, KLK2...)

¡Thank You!

egbillalabeitia@salud.Madrid.org

